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The radial basis functions (RBF) method is meshfree, easy to implement in any

number of dimensions and spectrally accurate for certain types of radial functions.

However, it still has stability and complexity issues which keep it from being used more

widely. In this dissertation, we study problems related to the complexity and stability

properties of the RBF method. In particular, we first study the locality property of

the RBFs expansion coefficients. We are able to show and quantify how a perturbation

in the function value at one node will affect expansion coefficients associated with only

the neighboring nodes. This locality property is a key in the development of fast iter-

ative methods (Powell, Faul, etc.), and our study is valuable in a time where the lack

of a generally applicable fast algorithm is one of the biggest obstacles that the RBF

methodology is facing. We also study the role of the shape parameter on the stability

of the method. It has been known for quite some time that certain nice properties (es-

pecially high accuracy) are linked with flat RBF interpolants (small values of the shape

parameter). However, the lack of stability associated with small shape parameters has

lead people to believe that computations of the interpolant in this regime of the shape

parameter were impossible. Fornberg and Wright developed the first tool (the Contour-

Padé algorithm) to get around the instability and thereby disprove the phenomenon

described by Schaback as the ”uncertainty principle.” We present a second algorithm,

which we call the RBF-QR algorithm. It is also designed to stably compute interpolants

in the case of flat RBFs, but is easier to implement and doesn’t have restrictions on the

number of nodes. We use this tool to study the role of the shape parameter on the error

when interpolating as well as when solving a convection equation on the sphere.
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Chapter 1

Introduction

This dissertation describes the four main research projects on which the author

has worked in the past two years. All four projects treat different aspects of the radial

basis functions (RBF) method. The papers which resulted from these projects have

been included as appendices. The first chapter will give an introduction to the RBF

method. Each following chapter will describe one project, give the motivation behind it,

a summary of the resulting paper, and will include results that, for a reason or another,

did not find a place in the submitted version of the paper. The work presented here

was done in collaboration with our RBF research group members Prof. Bengt Fornberg,

Dr. Natasha Flyer and Susan (Tyger) Hovde. The main contributors to the different

results covered in this thesis will be indicated with their initials. As of now, the paper

entitled ”Localization properties of RBF expansion coefficients for cardinal interpolants.

I. Equispaced nodes” (B. Fornberg, N. Flyer, S. Hovde and C. Piret) is accepted in IMA

Journal on Numerical Analysis. ”A stable algorithm for flat radial basis functions on a

sphere” (Bengt Fornberg and Cécile Piret) has appeared in SIAM J. Sci. Comp. ”On

choosing a radial basis function and a shape parameter when solving a convective PDE

on a sphere” (Bengt Fornberg and Cécile Piret) has been accepted by the Journal of

Computational Physics.
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1.1 History of RBFs

The RBF methodology was introduced in 1971 by Rolland Hardy [25]. He orig-

inally presented the method for the multiquadric (MQ) radial function. The method

emerged from a cartography problem, where a bivariate interpolant of sparse and scat-

tered data was needed to represent topography and produce contours. None of the

existing interpolation methods (e.g. Fourier, polynomial, bivariate splines) were sat-

isfactory because they were either too smooth or too oscillatory. Furthermore, the

non-singularity of their interpolation matrices was not guaranteed. In fact, Haar’s the-

orem states the existence of a set of distinct nodes for which the interpolation matrix

associated with node-independent basis functions is singular in two or higher dimen-

sions [33]. In 1982, Richard Franke popularized the MQ method with his report on 32

of the most commonly used interpolation methods [23]. He subjected those methods to

thorough tests, and found the MQ method overall to be the best one. Franke also con-

jectured the unconditional non-singularity of the interpolation matrix associated with

the multiquadric radial function, but it was not until a few years later, in 1986, that

Charles Micchelli [34] was able to prove it, making use of work by Schoenberg from the

30s and 40s.

The main feature of the MQ method is that the interpolant is a linear combination

of translations of a basis function which only depends on the Euclidean distance from

its center. This basis function is therefore radially symmetric with respect to its center.

The MQ method was generalized to other “radial functions”, such as the thin plate

spline [9], the gaussian, the cubic, etc. and the method was called the ‘Radial Basis

Function’ method. In the 1990s the RBF methodology was once again brought to the

spotlight when Ed Kansa introduced a way to use it for solving parabolic, elliptic and

(viscously damped) hyperbolic PDEs [27], [28].
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Name of RBF Abbreviation φ(r), r ≥ 0 Smoothness

multiquadric MQ
√

1 + (εr)2 Infinitely smooth
inverse multiquadric IMQ 1√

1+(εr)2

inverse quadratic IQ 1
1+(εr)2

Generalized multiquadric GMQ (1 + (εr)2)β

Gaussian GA e−(εr)2

Thin Plate Spline TPS r2 log(r) Piecewise smooth
Linear LN r
Cubic CU r3

Monomial MN r2k−1

Table 1.1: Definitions of some radial functions.

1.2 Formulation of the interpolation problem

A radial basis function interpolant takes the form

s(x) =
n∑

i=1

λi φ(‖x− xi‖), (1.1)

when we interpolate data values fi at the scattered node locations xi, i = 1, 2, . . . n

in d dimensions, and where || · || denotes the Euclidean 2-norm.

We obtain the expansion coefficients λi by solving a linear system A λ = f , based

on the interpolation conditions s(xi) = fi. The system takes the form





φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xn‖)

φ(‖x2 − x1‖) φ(‖x2 − x2‖) φ(‖x2 − xn‖)
...

...

φ(‖xn − x1‖) φ(‖xn − x2‖) · · · φ(‖xn − xn‖)









λ1

λ2

...

λn





=





f1

f2

...

fn





(1.2)

There are two kinds of radial functions, the piecewise smooth and the infinitely

smooth radial functions. For the infinitely smooth radial functions, we have a shape

parameter, ε. The closer this parameter is to 0, the flatter the radial function becomes.

Table 1.1 contains a list of the most widely used radial functions φ(r).
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Figure 1.1: The RBF method consists in centering a radial function at each node location
and imposing that the interpolant takes the node’s associated function value.
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1.3 Properties of RBFs as an interpolant

1.3.1 Accuracy

The cubic radial function φ(r) = r3, producing a cubic spline interpolant in 1-D

and has a jump in its 3rd derivative and its interpolant is O(h4) accurate (h is inversely

proportional to the number of node points, n. It can be thought of as the typical node

distance, since no grid is required.) The quintic radial function, φ(r) = r5, has a jump in

its 5th derivative and leads to an O(h6) accurate interpolant. In general, the MN radial

function φ(r) = r2k−1 has a jump in its 2k − 1st derivative and its interpolant will be

O(h2k) accurate. Thus, the smoothness of the radial function is the key factor behind

the accuracy of its interpolant. The piecewise continuous radial functions therefore

converge algebraically towards the interpolated function, as we increase the number of

node points. We note here that a radial function could not take the form φ(r) = r2k

since it could interpolate a maximum of 2k+1 nodes (in 1-D), due to the fact that

the resulting interpolant reduces to a polynomial of degree 2k. On the other hand,

a radial function which is infinitely continuously differentiable (and not of polynomial

form) will produce a spectrally accurate interpolant, which converges as O(e−
const

h )

towards the interpolated function, if no counterpart to the Runge phenomenon enters

[22]. The Gaussian RBF is an exception to the rule, as it converges as O(e−
const

h2 ),

i.e.’super-spectrally’ [15]. The accuracy of the infinitely smooth radial functions also

depends on their shape parameter and can be improved by changing the flatness of the

radial function. The limit of ε → 0, has become very interesting in that respect. The

range of small ε used to be inaccessible because of the ill-conditioning that it caused.

Since the introduction of the Contour-Padé method, developed by Fornberg and Wright

[20], this obstacle commonly known as ’the uncertainty principle’ was lifted and it was

finally possible to explore the features of the small ε RBFs [21], [44], [29], [30]. In

fact, in the limit of ε → 0, the RBF interpolant in 1-D was found to converge towards
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the Lagrange interpolation polynomial, and thereby reproduce the traditional spectral

methods such as Fourier and Chebyshev, if the node locations are chosen accordingly [8].

We observe that, for a fixed n, the error (when interpolating smooth functions) decreases

exponentially as ε decreases, until ε = εopt, at which point the Runge phenomenon picks

up and increases the error or halts further error reductions [22].

1.3.2 Stability

The stability can be a serious concern when using the RBF method. Although the

non-singularity of the collocation matrix is guaranteed for all of the smooth RBF choices

mentioned (MQ, IMQ, IQ, GA, etc.), no matter how the nodes are scattered in any

number of dimension, its condition number tends to increase with the number of node

points, making it very difficult or impossible to find the interpolant. In the case of the

infinitely smooth radial functions, stability is also dependent on their shape parameter.

The interpolant belongs to the space spanned by radial function translates centered at

each node point. When the shape parameter is close to 0, all those translates become

flat, and thus highly linearly dependent with each other. The system then becomes

severely ill-conditioned.

1.3.3 Computational cost

Computational cost is another issue linked to using radial basis functions. Smooth

radial functions are global, thus the collocation matrices associated to them are dense.

Because of the necessity to invert this matrix, the direct implementaion via (1.1) and

(1.2) has an O(n3) complexity. Although various efforts are underway to speed up the

process ([7] and [11]), the lack of a widely applicable, robust and fast algorithm is a

significant drawback in using RBFs. On the other hand, the algorithm is identical when

interpolating in any number of dimensions, i.e. the complexity doesn’t grow with the

dimension, which is a big advantage in using RBFs.



8

1.4 RBFs for solving PDEs

Ed Kansa was the first to use the RBF method to solve PDEs. His method con-

sisted in approximating spatial partial derivatives by differentiating smooth RBF inter-

polants to solve parabolic, elliptic, and viscously damped hyperbolic PDEs to spectral

accuracy, in a completely mesh-free manner [27].

1.5 The holy grail of RBFs: The ‘unattainable’ flat limit

We saw earlier that the flatter the radial function, the more ill-conditioned the

system becomes. Finding the ‘optimal’ shape parameter has for a long time been a

major theme in RBF research. For many years, the optimal shape parameter was

usually chosen to be the smallest one not severely affected by ill-conditioning, because

generally, flatter radial functions gave rise to a better interpolation space. However,

this trend was at some ‘optimal’ point interrupted by the worsening conditioning of the

system. Buhmann was the first to give some theoretical importance to the flat limit,

although it was viewed as unattainable, both because of ill-conditioning and because his

results were specific to infinite lattices. In 1995, Robert Schaback introduced the term

‘uncertainty principle’, or ‘trade-off principle’ to identify the seemingly necessary trade-

off between accuracy and acceptable conditioning of the RBF method (See Chapter 3).

He proved that it was impossible to have simultaneously flat or near-flat basis functions

and a well-conditioned matrix. However, without him noticing the distinction, his proof

concerned more the ‘direct’ RBF method (via (1.1) and (1.2)) than the RBF method in

itself. In 2002, Driscoll and Fornberg [8] showed not only the flat limit of the interpolant

exists but that it is well behaved. In fact, in the flat limit, the RBF interpolant in

1-D converges towards the Lagrange interpolating polynomial. This result was later

generalized to more dimensions [21]. Consequently, it was shown that this flat limit is

a generalization to irregular domains and scattered nodes to the PS methods. In 2004,
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Fornberg and Wright disproved completely the notion of the ‘uncertainty principle’,

which had started to fade after Driscoll and Fornberg’s results of 2002, by introducing

the very first algorithm that allowed a stable computation of the interpolant in the

flat radial functions regime, the Contour-Padé method [20]. It was finally possible to

explore the errors produced by flat or near-flat radial functions. It resulted in the new

insight that, although the interpolation space became better as the radial functions

became flat, there emerged again another ‘flatness’ threshold, after which the error was

either flat or increasing. This one was not due to ill-conditioning anymore but to the

Runge phenomenon [22]. Indeed, the Runge phenomenon is prominent in high degree

polynomial interpolation, thus also in flat RBF interpolation since one is the limiting

value of the other. Also, the Contour Padé method only works on a limited amount

of nodes, which lead Fassauher to note another ”trade-off” of accuracy and stability

versus the problem size [10]. In 2006, Fornberg and Zuev introduced the variable shape

parameter RBF method [22], which was designed to reduce the Runge phenomenon.

Finally, Fornberg and Piret [18] introduced the RBF-QR method, designed just like the

Contour-Padé method to go past the ill-conditioning ’barrier‘ of the radial functions,

but this time, without the limit on node numbers, thus destroying also the concept

of Fassahuer’s trade-off. Not only was this RBF-QR method applied to interpolation

(Chapter 3), it was also later used to generalize Flyer and Wright’s results on solving a

purely convective type PDE on the surface of the sphere (Chapter 4), and it was after

that modified to allow for variable shape parameters (Chapter 5). This revolutionary

method is the main subject of this dissertation.

1.6 RBF theory

The direct method (RBF-Direct) as expressed in (1.1) and (1.2) entails inverting

the collocation matrix A in order to find the expansion coefficients, thus the RBF

interpolant. As it was mentioned earlier, the non-singularity of the RBF collocation
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matrices is a huge incentive to using the RBF method. We now consider the invertibility

of the collocation matrices associated with the most common radial functions. The proof

of this key feature was completed in two stages. First, Schoenberg in 1938 proved the

unique solvibility of (1.2) for a small class of radial functions. Then, Micchelli in 1986

extended Schoenberg’s results to a larger class of functions, which includes more popular

ones, such as the MQ or the TPS RBFs. In addition to [34] and to [41], we use the

following sources for this section: [10], [38], [43].

1.6.1 The ‘basic’ RBF method (1.2)

We will call ‘basic’, the RBF method characterized by (1.2). It gives an expression

for the interpolant on the condition that the system (1.2) is uniquely solvable. In 1938,

Schoenberg proved in the set of theorems presented next, that a certain class of radial

functions, the completely monotonic functions, gives rise to strictly positive definite,

thus unconditionally non-singular collocation matrices.

Definition: Positive Definite Matrices A real symmetric matrix A is called

strictly positive definite if its associated quadratic form is positive

n∑

j=1

n∑

k=1

cjckAjk > 0 (1.3)

for all non-vanishing c ∈ Rn. Consequently, the eigenvalues of a positive definite matrix

are all strictly positive.

Theorem 1 Assume that d is any positive integer and that the points xi ∈ Rd, i =

1, 2, ..., n, are all distinct. If φ can be written in the form

φ(r) =

∫ ∞

0
e−αr2

w(α)dα, (1.4)

where w(α) ≥ 0 for α ≥ 0 and
∫∞
δ w(α)dα > 0 for some δ > 0, then the collocation

matrix A with entries Ai,j = φ(‖xi − xj‖) is positive definite.
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Definition: Completely monotonic functions A function φ(r) =
∫∞
0 e−αr2

w(α)dα,

r ≥ 0, where w ≥ 0 is said to be completely monotonic on [0,∞) if, when considering

ψ(r) = φ(r1/2) =

∫ ∞

0
e−αrw(α)dα. (1.5)

• ψ(r) ≥ 0, and

• (−1)kψ(k)(r) ≥ 0, r ≥ 0 for all positive integers k.

Theorem 2 φ(r) can be expressed as
∫∞
0 e−αr2

w(α)dα if and only if ψ(r) ≥ 0, r ≥ 0

is completely monotonic.

Examples of completely monotonic functions

• GA: φ(r) = e−ε2r2

• Generalized IMQ: φ(r) = (1 + ε2r2)β, β < 0

By the fact that these radial functions are completely monotonic, they give rise to

strictly positive definite collocation matrices.

However, Theorem 2 does not apply to radial functions such as LN, MQ or TPS.

Franke conjectured the non-singularity of the interpolation matrix associated with the

excellent MQ radial functions, but it was only in 1986 that Micchelli completed the

proof for LN and MQ radial functions with the RBF representation (1.2).

Theorem 3 Let ψ(r) = φ(r1/2) ∈ C0[0,∞), ψ(r) > 0 for r > 0, and ψ′(r) completely

monotone but not constant on (0,∞). Then, for any set of n distinct points {xj}n
j=1,

the nxn matrix A with entries Ai,j = φ(‖xi − xj‖) is non-singular. Furthermore, for

n ≥ 2, the matrix has n− 1 negative eigenvalues and one positive eigenvalue.

Examples of radial functions to which Theorem 3 applies

• LN : φ(r) = r
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• MQ : φ(r) = (1 + ε2r2)1/2

So, although these radial functions do not give rise to strictly positive definite matri-

ces, they nonetheless give rise to invertible matrices, permitting the interpolant to be

uniquely solvable unconditionally via (1.2).

1.6.2 The augmented RBF method

Radial functions such as TPS do not satisfy the necessary conditions for either

Theorems 2 or 3 to hold. In fact, when using the TPS RBF, there exist node sets

which produce a singular collocation matrix. In order to have sufficient conditions for a

non-singular system, Micchelli added restrictions, new requirements on top of (1.2) and

thereby introduced the augmented RBF method

Definition: The augmented RBF method The RBF interpolant of the given

data values fi at the scattered node locations xi, i = 1, 2, . . . n in d dimensions, now

takes the form

s(x) =
n∑

i=1

λi φ(‖x− xi‖) +
m̃∑

k=1

µjpj(x), x ∈ Rd, (1.6)

with the additional constraint that

n∑

j=1

λjpk(xj) = 0, k = 1, 2, ...,M (1.7)

with {pj : j = 1, 2, ..., m̃} a basis for Πm−1 (the space of the polynomials of degree at

most m-1 from Rd to R), and m ∈ N defined later.

The equivalent matrix equation to (1.6) takes the form




A P

P T 0









λ

µ





=





f

0





(1.8)

where matrix A is the collocation matrix defined in (1.2) and where matrix P is m̃xn

and Pij = pi(xj), i = 1, 2, ..., m̃, j = 1, 2, ..., n.
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Theorem 4 Let ψ(r) = φ(r1/2) ∈ C0[0,∞), ψ(r) > 0 for r > 0, and ψm+1(r) com-

pletely monotone but not constant on (0,∞), for m ≥ 0. Then, for any set of n distinct

points {xj}n
j=1 that satisfy the condition rank(P ) = m̃, where P is the m̃×n matrix in

1.8, the (n+m̃)x(n+m̃) matrix in 1.8 is non-singular. Furthermore, if m̄ is the smallest

m such that ψm+1(r) is completely monotone, then for any non-zero vector α ∈ Rn that

satisfies the condition P Tα = 0, the following relation holds (−1)m̄+1αTAα > 0, where

A is the nxn matrix in (1.2).

Examples of radial functions that can now be considered

• TPS : φ(r) = r2kLog(r) (m = k + 1)

• Generalized MQ : φ(r) = (1 + ε2r2)β , β > 0 (m = ⌈β⌉, where ⌈β⌉ means the

smallest integer larger than β)

• MN : φ(r) = r2k−1, k ∈ N (m = k)

These radial functions, which could not be considered using the direct method

(1.2), now can be used to find a unique RBF interpolant via (1.8). We note that all the

radial functions which give a unique solution to (1.2) can also be used via (1.8). In fact,

in the case where the functions are completely monotonic, we will recover (1.2) from

(1.8) since in that case, m = 0. By using the representation (1.8) rather than (1.2),

although we have relaxed the conditions on the radial functions, thus opening the door

to a much larger class of radial functions, we have added new restrictions on the data

node sets. For this reason and because the most common radial functions don’t require

the augmented form (MQ, GA, IMQ, IQ, etc.), we make use principally, in the work

presented here, of the representation (1.2), rather than the augmented RBF method

(1.8).



15

1.7 Overview of thesis topics

This dissertation is divided into six Chapters. Chapter 2 contains a summary of

our work on studying the decay rates of the RBFs expansion coefficients when interpo-

lating cardinal data. In short, we study the locality property of the RBF method, with

respect to its expansion coefficients space. A completely different topic is studied in the

subsequent chapters, the RBF-QR method. In Chapter 3, we introduce the RBF-QR

method and apply it to interpolation. Chapters 4 and 5 focus on applying RBF schemes

to solve purely convective PDEs on the surface of the sphere. Both the RBF-QR with

fixed and with variable shape parameters are introduced and utilized in these contexts.

Finally, Chapter 6 offers conclusions.



Chapter 2

Localisation properties of RBF expansion coefficients for cardinal

interpolation

2.1 Motivation

Despite the great qualities of the RBF method, such as its spectral accuracy or

the fact that it is meshfree, its high computational cost is the main reason for which it is

not being used more widely. Most radial functions are global which implies that the in-

terpolation matrix to which they give rise, is dense. The bulk of the method’s high cost

comes from the process of inverting this matrix. Several research groups (Faul, Pow-

ell, Beatson, Greengard, etc.) have been working on finding algorithms to decrease this

complexity. However, in the hope of better understanding the RBF method and perhaps

of advancing research towards an efficient fast algorithm, we instead focus on analyzing

the RBF interpolants’ intrinsic locality property of their expansion coefficients. Indeed,

RBFs have this property which none of the most popular pseudospectral methods ex-

hibit, that a perturbation in a function value will only affect the expansion coefficients

associated with the nodes neighboring that perturbation location. This chapter is in-

tended to study this property and to give insights on why and how it can be used

to reduce the complexity of the RBF method. Bengt Fornberg, Natasha Flyer, Tyger

Hovde and the author all contributed to this project.



17

2.2 Definition of ’locality‘ in this context

The property of locality which RBF’s expansion coefficients possess is illustrated

in Figure 2.1. In this figure, we show the impact of the perturbation of one function

value on both the RBF and the Fourier expansion coefficients. The plot of the difference

between the original and the perturbed cases demonstrates that, in the RBFs case, the

impact decreases exponentially fast as we move away from the perturbed node. However,

in the Fourier case, all of the expansion coefficients have been affected, which shows the

lack of the locality in the Fourier coefficients. For simplicity, our study focuses on infinite

integer lattice. We based it on Fourier analysis, the perfect tool for such a setting. The

more general case of semi-infinite integer lattice case and the scattered data case were

recently considered by Tyger Hovde, but no paper on this subject is yet available.

2.3 Consequences of such a property

In a counter-intuitive way, although most radial functions are global, and some,

such as MQ even growing larger with increasing distances, they all still are found to

possess an innate locality character with respect to their expansion coefficients. This

property, which had not been pointed out clearly in earlier literature, or been analyzed,

is advantageous to us in a few respects.

2.3.1 The conditioning of the interpolation matrix

The property of locality is tied in with the unconditional non-singularity of the

interpolation matrix to which the radial function gives rise. A perfect locality would

imply a diagonal interpolation matrix, thus a perfectly conditioned system which is

trivial and quick to invert. Any amount of locality will likely make our system better

conditioned. A consequence of this will be that iterative methods [7], [11] to find the

interpolant will therefore converge faster and this is one possible way out of the O(n3)
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complexity.

2.3.2 Fast algorithms

Locality gives us an opportunity for fast algorithms. As we mentioned above, it

enters in the convergence rates of some of the existing algorithms. But the importance

of the locality property when it comes to fast algorithms is explained very schematically

in Figure 2.2

• Consider interpolating n data points in 1-D. In order to compute the interpolant

(i.e. in order to find the expansion coefficients of the interpolant,) we will need

O(n3) operations since inverting a dense matrix is necessary. The first row of

Figure 2.2 illustrates this situation.

• Now, consider splitting the n nodes into clusters of neighboring points, as on the

second, third and fourth rows of Figure 2.2 . When we interpolate these clusters,

the property of locality implies that the expansion coefficients associated with

the interior nodes of the cluster will be resolved up to some accuracy (which

depends on how much in the ”interior” the nodes are).

• Assuming that we split n points into m clusters. The work for each cluster will

be O(n/m)3 operations. We perform this about 2 ∗ m times (the factor of 2

comes from the overlapping nodes). Thus the total process will cost O(n3/m2).

Take m ≈
√

(n) and we get an O(n2) method.

2.3.3 Benefits due to the locality property on scattered nodes

Although it is not documented in a paper yet, Tyger Hovde’s work suggests that

the locality property is not confined to interpolation on integer lattice, but arrises also

for scattered data. The benefits of the locality property which we described above will

therefore also be useful on non-regular lattice. Another one of the consequences will be
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Figure 2.1: Plots demonstrating the locality property of the RBF expansion coefficients
(Figure produced by TH)
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the easy addition of node points to an interpolant, since it will not necessitate solving

the system all over again, but rather, solving a system that only includes the neighboring

nodes to the point which we are adding.

Our work on analyzing the locality property of the RBF expansion coefficients [16]

can be found as Appendix A and is about to appear in the IMA Journal on Numerical

Analysis.

2.4 Summary of paper

2.4.1 Introduction

In this section, we motivate the project. Although the RBF method is a general-

ization of all classical pseudospectral methods (to scattered nodes and irregular domains,

Driscoll & Fornberg, 2002), there are important differences between the two types of

methods; if the classical PS basis sets have an inherent orthogonality property, RBFs

on the other hand, provide an unconditional non-singularity of the collocation matrix,

even in scattered node multi-dimensional cases. The RBF interpolants exhibit a strong

property of locality, which PS methods lack. The concept of locality is then introduced

and defined. We explain how the lack of locality can be responsible for ill-conditioning

and how the degree of locality enters in the convergence rates of fast iterative methods.

We give a brief sketch on how we will quantify the degree of locality for each of the

most commonly used radial functions in one and in two-dimensions by analysing the

expansion coefficients obtained when interpolating cardinal data (i.e. 1 at the datum,

and 0 at each other integer lattice node). We then outline the different sections.

Our work on analyzing locality builds on Buhmann’s references [5], [6] where he

found integral formulas for the expansion coefficients to the cardinal data interpolant,

which we show next. While adopting the definition for the Fourier transforms f(x) =

1√
2π

∫∞
−∞ f̂(ω)eiωxdω and f̂(ω) = 1√

2π

∫∞
−∞ f(x)e−iωxdx, the expansion coefficients can
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Figure 2.3: Plots of λ in function of k in the case of MQ for ε = 1. Notice the exponential
decay for small k, followed by the algebraic decay. The dots show the true λ, while the
solid line shows the results of our 2-term asymptotic formula.

be written as

λk =
1

(2π)3/2

∫ 2π

0

eikξ

∑∞
j=−∞ φ̂(|ξ + 2πj|)

dξ (2.1)

Buhmann studied the decay rates of their interpolant s(x) as ||x|| → ∞. In [16],

we analyze instead the decay rates of the expansion coefficients of the interpolant to

cardinal data, by finding closed form expressions or asymptotic expansions to (2.1)

for all of the commonly used radial functions. In 1-D, we find that for small k, the

expansion coefficients λk decay exponentially for all radial functions. For larger k, the

coefficients λk either revert to an algebraic deay (e.g., TPS, IQ, MQ) or don’t (e.g., GA,

CU). In 2-D, we find the same kind of decay as in the 1-D case (example in Figure 2.3)

characterized by an exponential decay followed possibly by an algebraic decay. We also

find a dependence of the decay on the angle in the coefficient space k1, k2. In the 1-D

case and in the 2-D case, we examine the effect of the shape parameter on the decay

rates.
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2.4.2 Closed form expressions for cardinal coefficients

In this section, we derive general integral formulas for the expansion coefficients

when interpolating cardinal data in d-dimensions. We base our work on Martin Buh-

mann’s formula (A.2.3), generalize it to d-dimensions and devise a plan to obtain explicit

expressions for all radial functions. For some radial functions, it is possible to obtain

fairly simple expressions for the cardinal data expansion coefficients in 1D. These spe-

cial cases, which include CU, IQ, GA and SH are thouroughly worked out. Most of the

analytic work of this section was done by NF and by BF.

2.4.3 Asymptotic analysis in 1-D by means of contour integration

As we mentioned earlier, it is rare to be able to find a closed form explicit formula

(i.e. not an integral formula) for cardinal expansion coeffients. This section describes

an original asymptotic approach to approximate these coefficients and their decay rates.

2.4.3.1 Methodology

The integral equation (A.2.3) for the expansion coefficients is a Fourier type

integral

I(x) =

∫

C
f(z)ex(u(z)+v(z))dz (2.2)

where u(z) = 0 and where v(z) = iz The method of the steepest descent constists in

modifying the contour in order to integrate along the steepest descent of the exponenti-

ated function u(z). It follows from calculus that the path which will make u(z) descent

the fastest is also the path which will make v(z) constant [1]. Instead of following the

real axis from 0 to 2π, we follow z = it, which makes u(z) = −t and v(z) = 0 and

which conveniently makes our integral a Laplace’s type integral with a fast decaying

integrand, on which we use Laplace’s method. In order to make the bridge from 0 to

2π (Figure A.2), we follow the path z = ic+ t, where c is a large positive real number.
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The integral takes the form I(x) =
∫
C f(z)ex(−c+it)dz, which is insignificant for large

enough c by Jordan’s lemma. It remains to calculate the residues at the poles that this

new contour surrounds to get an asymptotic formula for the decay rates of the different

radial functions. We notice that the vertical path, along the imaginary axis, goes along

a branch cut for some radial functions. So, even though the integrand is 2π periodic,

going up and down the path on each side of the cut will result in an algebraic contri-

bution, while the pole will contribute with an exponential. The radial functions which

do not have a branch cut on the imaginary axis will thus have expansion coefficients

whose behavior is lead by only exponentials and won’t have the second agebraic regime,

observed in some cases. These two main contributions correspond to two different types

of decay, dominating for different regimes of the index of the expansion coefficients.

The contribution from the pole is an exponential part, producing an exponential decay

as the index grows. The branch cuts give rise to an algebraic part, thus, an algebraic

decay. We applied this method to the MQ (CP and TH), IQ (CP), GMQ (CP and TH),

GA (BF), SH (BF) and BSL (BF) and found in each case asymptotic formulas for the

decay of the expansion coefficients in terms of the index and of the shape parameter ε.

In the case of the generalized multiquadric radial function GMQ, we explain why the

MQ is ‘optimal’ also from the point of view of locality. Indeed, we find that when β is a

half-integer, the algebraic decay is more abrupt than otherwise (Figure A.5). However,

as β increases, the conditioning worsens making β = 1/2 especially attractive.

2.4.4 Summary of asymptotic observations in 1-D

This analysis allows us to find generalizations for the behavior of the expansion

coeffients of the different radial functions.

• All radial functions see an exponential decay in their cardinal coefficients. This

mostly influences the first few terms since the exponential decay is so abrupt.
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• Some radial functions experience an algebraic decay. This type of decay domi-

nates the character of the expansion coefficients later in the indices. There will

be such a decay if the integrand in Equation (A.2.3) contains a branch cut.

• As the shape parameter ε goes to 0, the coefficients of the leading terms increase

considerably, as shown in Table A.1, making the decay slower.

2.4.5 Analysis and observations in 2-D and higher

The natural follow up to this work is to consider the two-dimensional case and to

figure out whether or not the localization trend is still present. We found numerically

that in the two-dimensions case, this trend is still there for all of the radial functions

which we considered. However, the lack of an analog to Cauchy’s formula in higher

dimensions made it impossible for us to carry out our asymptotics method in two di-

mensions. The exponential decay rate depends on the radial direction in the k1, k2-plane

as seen in Figure A.8. In fact, it is important to note that this angular dependence comes

from the node layout. The one presented here is a cartesian node layout and gives us

a particular four-fold symmetry, while a hexagonal layout will give us a six-fold sym-

metry (this is being explored further by TH and by BF). With this considerable added

difficulty, we were not able to find an expression for the exponential decay rates.

• GA: In the Gaussian case, we find a closed-form expression for the cardinal ex-

pansion coefficients in d-dimensions. In fact, the value of the cardinal expansion

coefficients in d-dimensions can be written as the product of the 1-D coefficients

along each dimension. This was proved by the author (CP).

• CU: We were only able to express the asymptotic algebraic rate for the cubic

RBFs using an original method presented in Section A.5.2.1. This work was

done by BF.
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• TPS, GA and SH: There is no algebraic trend to the decay, since for all of these

radial functions, the integrand does not contain any branch cut. We note that

we also include a proof of the unconditional non-singularity of the collocation

matrix associated with SH, for scattered data and in d-dimensions (BF and

NF).

• MQ, IMQ, IQ: Using the same technique as for the cubic RBFs, we found the

algebraic decay rates for these radial functions (BF).

2.4.6 Summary of observations for RBF cardinal coefficient decay

In this section, we summarize the important observations and conclusions that

were made in this paper. We point out the significance of the exponential decay as the

leading order behaviour.

2.5 Additional results

2.5.1 Introduction

Different efforts were put towards broadening this work. TH studied the decay

rates of cardinal data expansion coefficients on the semi-infinite line and on scattered

data on the 1-D infinite line. The author (CP) studied further the decay of equispaced

cardinal data expansion coefficients on the unit circle, and how it varied from the 1-D

infinite lattice case. This is presented next.

2.5.2 Equispaced cardinal data expansion coefficients on the unit circle

Let the radius r be fixed and let θi = 2π
n i, i = 0, ..., n − 1.

The interpolant takes the form

s(x) =
n−1∑

i=0

λiφ(||xi − x||) (2.3)
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Making the change of coordinates to polar, with x = (r cos(θ), r sin(θ)), xi = (r cos(θi), r sin(θi)),

and making use of some trigonometric identities, we get

s(θ) =
n−1∑

i=0

λiφ

(
2r sin

(
θ

2
− πi

n

))
(2.4)

In order to interpolate the cardinal function, f
(

2πk
n

)
= 1 for k = 0, and f

(
2πk
n

)
=

0 for k = 1, ..., n − 1 we require that

s

(
2πk

n

)
=

n−1∑

i=0

λiφ

(
2r sin

(
πk

n
− πi

n

))
(2.5)

Let

β(ρ) = φ

(
2r sin

(
π

N
(ρ)

))
(2.6)

Also, let

Λ(ξ) =
n−1∑

k=0

λke
ikξ (2.7)

and

Θ(ξ) =
n−1∑

k=0

β(k)eikξ (2.8)

Using the convolution theorem for discrete Fourier Transforms, we know that

Θ(ξ)Λ(ξ) = 1 (2.9)

Therefore,

Λ(ξ) =
1

Θ(ξ)
(2.10)

which gives us finally the analog to Equation (A.2.3) (given for the 1-D infinite line),

the closed form expression of the cardinal expansion coefficients on the circle,

λk =
1

n

n−1∑

j=0

(
e−ik2πj/n

∑n−1
m=0 φ(2r sin(πm/n))eim2πj/n

)

(2.11)

In order to make a comparison with the case of the 1-D infinite lattice and the

analysis of its cardinal expansion coefficients decay rates, we consider Equation (A.2.3)

λk =
1

2π

∫ π

−π

e−ikξ

∑∞
j=−∞ φ(j)eijξ

dξ (2.12)
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We apply the composite trapezoidal rule on this integral (with a periodic integrand,

thus giving us spectral precision), and we get

λk =
1

n

n−1∑

j=0

(
e−ik2πj/n

∑∞
m=−∞ φ(m)eim2πj/n

)

+O(e−αn) (2.13)

Notice that (2.11) and (2.13) are identical except from their denominators. In order to

be able to compare both equations more easily, we note that

∞∑

m=−∞
φ(m)eim2πj/n =

n−1∑

m=0

eim2πj/N
∞∑

k=−∞
φ(m+ kn) (2.14)

Also we notice that, although
∑∞

k=−∞ φ(m + kN) obviously diverges for non-decaying

RBFs,
∑∞

m=−∞ φ(m)eim2πj/n converges. Indeed, from the Poisson summation formula,

∞∑

m=−∞
φ(m)eim2πj/n =

∞∑

k=−∞
φ̂(2πj/n + 2πk) (2.15)

which converges fast. Now, we have

λk =
1

n

n−1∑

j=0

(
e−ik2πj/N

∑n−1
m=0 e

im2πj/n
∑∞

k=−∞ φ(m+ kn)

)

+O(e−αn) (2.16)

Thus for a fixed n large enough,

n−1∑

m=0

eim2πj/n
∞∑

k=−∞
φ(m+ kn) ≈

n−1∑

m=0

eim2πj/n
M∑

k=−M

φ(m+ kn) (2.17)

≈
n−1∑

m=0

eim2πj/nφ(m) (2.18)

So, for n large enough, we can approximate Equation (2.16) with

λk ≈ 1

n

n−1∑

j=0

(
e−ik2πj/N

∑n−1
m=0 e

im2πj/nφ(m)

)

(2.19)

Equations (2.11) and (2.19) are very similar. Indeed, the only difference between

those two are φ(2r sin(πm/n)) in Equation (2.11) versus φ(m) in Equation (2.19). In

fact, to see how similar these two equations are, we look at the Taylor series expansion

of φ(2r sin(πm/n))

2r sin(
πm

n
) = 2r(

πm

n
− π3m3

3!n3
+
π5m5

5!n5
− ...) (2.20)
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It is now obvious that for n very large,

2r sin(
πm

n
) ≈ 2r

πm

n
(2.21)

Thus choosing r = n
2π will lead to

2r sin(
πm

n
) ≈ m (2.22)

which makes Equations (2.11) and (2.19) identical for very large n (The infinite line

case presented in Appendix A is thus the limiting case of the circle one as the radius

r → ∞). This result is interesting in that it gives a link between the cases of the circle

and of the 1-D infinite line, where our asymptotic formulas for the decay rates of the

cardinal coefficients hold.



Chapter 3

The RBF-QR method

3.1 Introduction

The uncertainty principle was introduced by Robert Schaback in 1995 [39]. It

states that it is impossible to simultaneously have a well conditioned system and good

accuracy when using the RBF method. In general, decreasing the shape parameter ε

has the effect of improving the accuracy of the interpolation [15], but also of raising

dramatically the condition number of the collocation matrix. With their Contour-Padé

method, Fornberg and Wright [20] disproved this theory and for the first time were able

to stably compute interpolants in the region of very small ε for up to around a hundred

node points in 1-D (a couple hundred points in 2-D and 3-D). The RBF-QR method,

developed for the surface of the sphere by Fornberg and Piret [18], and for more general

domains by Larsson and Fornberg [31], is intended to fulfill the same purpose, but for a

much larger amount of node points. In addition, the RBF-QR method is faster (same

complexity as the original RBF method) and is easier to implement than the Contour-

Padé method. We can now compute an RBF interpolant, even when its shape parameter

is much too small for the direct method to work, for thousands of node points.

In their recent works [12] and [13], Flyer and Wright compare common spectral

methods (Spherical harmonics, double Fourier series and spectral element methods) for

solving the pure convection PDE and the shallow water equations on the surface of the

sphere, and show the superiority of RBFs in doing so. The strength of RBFs lies in
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Figure 3.1: The ”shape parameter” ε determines the flatness of the radial function.

the fact that it not only works with fewer nodes and longer time-steps than the other

spectral methods to obtain the same level of accuracy, but also that it is much simpler

to program. However, RBFs still are confronted with the stability and complexity issues

mentioned earlier. The RBF-QR method is intended to solve the former. This chapter

will focus on the method in itself and the application of interpolation only. Chapter 4

will however be dedicated to using the RBF-QR method to generalize Natasha Flyer

and Grady Wright’s results on their convection problem.

An article with the introduction of this new algorithm as well as the analysis of

numerical results that it yields has appeared in the SIAM Journal of Scientific Comput-

ing [18].

3.2 Summary of paper

3.2.1 Introduction

In this section, we give the motivation behind the new RBF-QR method, as a

way to go past the ill-conditioning issues that we encounter when we work with flat or
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near-flat radial functions. Just like the Contour-Padé method, the RBF-QR method

allows us to compute stably the interpolant (and the solution to PDEs in Chapter 4)

even with flat radial functions. It has the advantages over the Contour-Padé method

that is much easier to code and that it can handle thousands of node points and remain

a stable algorithm.

The terms of the basis behind the direct RBF method are the RBF translates

centered at each node location. They become awfully linearly dependent with each other

when they become flat. But their interpolation space improves (explained in Chapter

1). The key behind the RBF-QR algorithm is the formation of an equivalent, in terms

of the spaced spanned, but much better conditioned basis than the one associated with

the direct method (RBF-Direct).

3.2.2 RBF methodology

In this section, we expose some of the basic RBF theory, also found in the first

chapter of this dissertation.

3.2.3 The RBF-QR method

3.2.3.1 An equivalent basis

The key of this method is the basis transformation from a very ill conditioned one

(made of the translates of the radial function) to a much better conditioned one, which

spans the same exact space. Making such a basis change is exactly what we do when

we go from the ill conditioned monomials 1, x, x2, ..., xn on [-1,1] to the much better

conditioned Chebyshev basis T0(x), T1(x), T2(x), ..., Tn(x).

3.2.3.2 Sherical Harmonics (SPH)

Spherical harmonics can be considered as analogs of the Fourier modes on the

surface of the sphere. Just like Fourier modes, spherical harmonics can be seen as a
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set of orthogonal eigenfunctions to Laplace’s equation, hence the origin of their name

’harmonic’ [35]. Just like Fourier modes on the unit circle, we can see them as harmonic

polynomials restricted to the surface of the sphere. They do not have a naturally

associated node set but Euler points (latitude/longitude grid) are sometimes used - if

so, with several times more nodes than there are SPH coefficients. However, there exists

no clear fast algorithm like the FFT (although some approaches offer advantages in very

large cases; see [40] and [36]) which would allow us to easily go from one native space to

the next. Just like Fourier modes, Spherical harmonics offer no possible local refinement.

We can’t increase the accuracy in one specific area of the domain by clustering nodes

in that specific area. Although SPH offer a spectral accuracy when it comes to solving

PDEs on the surface of the sphere, their accuracy is uniform across the surface of the

sphere.

3.2.3.3 Expansions

We base our method on the formulas explicitly given by Hubbert and Baxter [26]

for MQ, IMQ and GA.

φ(‖x− xi‖) =
∞∑

µ=0

µ∑

ν=−µ

′{cµ,ε ε
2µ Y ν

µ (xi)} Y ν
µ (x) , (3.1)

where the weights cµ,ε can be found in table (B.3.2)

3.2.3.4 Matrix representation

In this section, we describe the matrix aglebra behind the RBF-QR method.

First, the equivalent repesentation to the radial function translates in terms of SPH is

displayed in (B.3.4) and in matrix × vector form in (B.3.5). A QR factorization is then

applied to matrix B, and the ill-conditioning in the form of matrix E (B.3.6) is removed

analytically (without leaving any trace of the original ill-conditioning). Another way

to explain the method is by the following argument. Consider the direct RBF method
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interpolation representation A·λ = f . From equation (B.3.6), A = Y T ·RT ·E·Q−1.

Thus, Y T ·RT ·E·Q−1·λ = f . We observed that when the radial functions become flat

(when ε → 0), the expansion coefficients λ tend to ±∞. With this representation, we

have isolated all the ill-conditioning in the matrix E (diagonal matrix whose terms are

powers of ε) which then can be eliminated from the problem by letting σ = E·Q−1λ.

We obtain the RBF-QR representation of the RBF interpolant Y T ·RT ·σ = f , where

each term is well-behaved with respect to ε. The original idea of changing basis to

analytically remove the singularity caused by powers of ε comes from (BF), and its

evolution to the RBF-QR method was a collaborative work between (BF) and (CP).

Thanks to this change of basis from the radial function’s translates to ultimately a basis

of the form (B.3.7), we prove that in the limit of ε→ 0, the RBF interpolant converges

towards a unique spherical harmonics interpolant on the conditions that the number of

nodes n is a square number and that the spherical harmonics interpolant exists. This

result is the analog on the sphere to the one proved by Driscoll and Fornberg [8], which

states that in 1-D, the RBF interpolant converges towards the Lagrange interpolating

polynomial. This was proved by the author (CP) along with (BF).

3.2.3.5 Computational considerations

In this section, we discuss the complexity and we describe the approach that we

took with respect to truncation.

• Code complexity. The computational cost is of O(n3). It originates from the

cost of a QR factorization of the B matrix and the cost of a matrix inversion

(which corresponds to finding the expansion coefficients of the interpolant with

respect of the new basis), both of which are O(n3). It thus has the same order

of computational cost as the direct method.

• Truncation. We need to guarantee an accuracy to machine precision (i.e. 16
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digits of accuracy) of the SPH expansion of the radial function translates (ac-

cording to Equation (B.3.3)). Each row of matrix B contains the SPH expansion

coefficients of a radial function (Equation (B.3.5)). Thus we build matrix B by

adding blocks which correspond to consecutive degrees of spherical harmonics.

We stop adding blocks when the magnitude of the last entered block is 10−16

smaller than the magnitude of the block containing the nth SPH expansion

coefficient.

3.2.4 Numerical results

We tested our method on the following two functions

Gaussian bell: g(x, y, z) = e−( 2.25
R

arccos x)2 ,

Cosine bell: c(x, y, z) =






1
2 (1 + cos( π

R arccos x)) x > cosR,

0 x ≤ cosR,

(3.2)

of smoothness C∞ and C1, respectively. R is here a parameter which controls how

peaked the bells are, going from spike-like at R = 0 to flat for increasing R. The

cosine bell features a jump in the second derivative at the edge of its region of support.

Figure 3.2 shows the error when we interpolate, at 1849 nodes, Gaussian bells of two

different thicknesses and under two different node distributions (random distribution

and minimum energy node distribution). We see that the error computed using the

RBF-QR method smoothly continues the curve of the error obtained from the direct

method when ill-conditioning kicks in at about ε ≈ 1.

We observe that there is in all cases an ε, call it εopt, which yields the smallest

error. As mentioned earlier, Fornberg and Zuev [22] ascribe the increase in the error

when ε < εopt to the Runge phenomenon. On the surface of the sphere, a similar

phenomenon arises. As we mentioned earlier, as ε → 0, the RBF interpolant tends to

the spherical harmonics (SPH) interpolant of a certain degree depending on the number

of node points. The SPH of a fixed degree can only resolve accurately peaks of a certain
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width. Therefore, thinner peaks cannot be resolved without introducing error at the

base of the structure. This explains the increase in the error when ε tends to 0.

3.2.5 Some comments on the choice of optimal ε

In this section, we discuss the value of the ‘optimal’ shape parameter value. For

years, people observed a decrease in the error as ε was getting smaller. On the other

hand, as ε was getting smaller, the ill-conditioning of the collocation matrix was getting

larger. There was a point finally where the ill-conditioning was too large to give an

accurate result, and the error would start increasing as ε was getting smaller. People

considered the ε value corresponding to the minimum error, the ‘optimal’ shape param-

eter value. Thanks to the RBF-QR method, we realize that this value is not actually the

‘optimal’ one, but the value at which the detrimental ill-conditioning of the collocation

matrix starts to cause harm. We can now remove this detrimental ill-conditioning and

observe that another phenomenon, the Runge phenomenon, generates an error as well,

when ε gets smaller. The ‘optimal’ shape parameter is therefore the value of ε at which

the Runge phenomenon appears.

3.2.6 Conclusion

This section contains the main conclusions. We reiterate the purpose and utility

of the RBF-QR method. We also explain in which respects the RBF method is superior

to the SPH method. Finally, we include a thouroughly documented Matlab code for

the RBF-QR method.

3.3 Additional work

This additional analysis work was not included in [18]. It gives an explanation

for the increase in the error as ε gets very small.
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3.3.1 Interpretation of test results: Error levels when ε is very small

For non-periodic problems, it was noted in [22] that the polynomial Runge phe-

nomenon often will explain the observed error growth as ε approaches zero. In the

present periodic setting, we will next see that a similar effect will again arise, but which

is this time best understood by considering properties of an SPH expansion.

Recalling the polynomial representation for the SPH basis functions, as displayed

in Table B.3.1, it is clear that the function f(x, y, z) = (1+x
2 )42 (like any other polynomial

in x, y, z of degree up to 42) when restricted to the sphere x2 + y2 + z2 = 1 will become

exactly represented as an SPH interpolant over n = 1849 = 432 nodes when we are using

SPH functions up to µ ≤ 42. This function f(x, y, z) is displayed at the top of Figures

3.3 and 3.4. We can note that the width of this ‘bell’ falls somewhere in-between the

Gaussian bells with R = 0.6 and R = 0.4, as were used to obtain the data for Figure

B.4.4. In some sense, the f(x, y, z) bell represents the narrowest one for which RBF

interpolation is nearly perfect in the SPH ε→ 0 limit.

To understand how the SPH interpolation error will grow when bells are made

even narrower than the one represented by f(x, y, z), we can first note that Chebyshev

polynomials oscillate by equal amplitude over x ∈ [−1, 1] but grow extremely fast outside

this interval. Based on this observation, we can translate and scale the Chebyshev

polynomial in x of degree 42 to become still much more peaked at x = 1 than the

function (1+x
2 )42. Like how we extended the univariate function (1+x

2 )42 into f(x, y, z) =

(1+x
2 )42 (defined over the surface of a sphere), we also extend the translated and scaled

Chebyshev polynomials, with the results as seen in the remaining subplots of Figures

3.3 and 3.4. In these cases, a is a free parameter, and

f(x, y, z) =
1

a
T42

(
(
x+ 1

2
)β + (

x− 1

2
)

)
(3.3)

where β is chosen such that T42(β) = a. The interval [-1,1] for x has become mapped

to [−1, β] where to a = 104, 102, 101 correspond β = 1.0279, 1.00797, 1.00254 respec-
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Figure 3.3: The function f(x, y, z) = (1+x
2 )42 and Chebyshev-type bells for different

values of their paratemer a, as defined by (3.3). In order to display the ripples better,
the grey scale in the right column of subplots is different from the one used in Figures
B.4.2 and B.4.3.
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Figure 3.4: The same bell functions as in Figure 3.3, displayed over the ϕ, θ-plane, with
the n = 1849 nodes also marked.
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tively. These very peaked bells will again be interpolated exactly when using SPH (i.e.

RBF with ε = 0) and n = 1849 points. However, this has come at the price of signifi-

cant ‘noise’ (with amplitude 1
a) away from the peak. In contrast to this SPH trade-off

between sharpness of bells and a noisy base level, RBF with larger values of ε can easily

represent very peaked bells without any background level of ‘noise’. For GA, IQ and

IMQ radial functions, this is immediately obvious, but can also be seen to be the case

for MQ.

3.3.2 Fourier expansion coefficients on the circle

We present the analog in terms of Fourier modes on the circle to the expression

of the radial function translates in terms of SPH on the sphere (B.3.3). Thanks to these

expansions, we can easily modify the RBF-QR method presented in [18] to involve

Fourier modes instead of SPH. This work was completed by the author (CP)

Let x = (cos θ, sin θ) and xi = (cos θi, sin θi)

3.3.2.1 Closed form expression for the Fourier coefficients

In rare cases, we can find a closed form expression for the Fourier expansion

coefficients of the radial function translates. Here are two examples, GA and IQ.

φ(||x− xi||) = φ
(√

2 − 2x.xi

)

= φ

(√
2 − 2 cos(θ − θi)

)

=
∞∑

k=0

ak cos (k(θ − θi))

=
∞∑

k=0

ak(cos (kθi) cos (kθ) + sin (kθi) sin (kθ)

Let γ = θ − θi

ak =
1

π

∫ π

−π
φ
(√

2 − 2 cos γ
)

cos(kγ)dγ
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• GA

ak =
1

π

∫ π

−π
e−ε2(2−2 cos γ) cos(kγ)dγ

=
2

π
e−2ε2

∫ π

0
e2ε2 cos γ cos(kγ)dγ

= 2e−2ε2
ikJk(−2iε2)

= 2e−2ε2
Ik(2ε

2)

• IQ

ak =
1

π

∫ π

−π

cos(kγ)

1 + ε2(2 − 2 cos γ)
dγ

=
2

π

∫ π

0

cos(kγ)

1 + 4ε2
(
sin γ

2

)2dγ

=
2√

1 + 4ε2

(
1 + 2ε2 −

√
1 + 4ε2

2ε2

)k

3.3.2.2 General expression for the Fourier coefficients

Let t = x.xi and let ψ(t) = φ(
√

2 − 2t). We can find the expansion of ψ(t) in

terms of legendre polynomials [26].

ψ(t) =
∞∑

k=0

ckLk(t)

where the coefficients ck are defined as follows

ck =
2k + 1

2

∫ 1

−1
Lk(t)ψ(t)dt

=
2k + 1

2k+1k!

∫ 1

−1
(1 − t2)kψ(k)(t)dt

For example in the IMQ case (Note that convergence analysis of the obtained series are

considered in [26]),

ck =
(−1)kε2k√π
Γ(1/2 − k)

24k+1 k!

(2k)!

1
(
1 +

√
1 + 4ε2

)2k+1

=
2k + 1

2k+1k!

∫ 1

−1
(1 − t2)kψ(k)(t)dt
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A legendre polynomial can always be expressed as a linear combination of Chebyshev

polynomials

Lk(t) =
k∑

j=0

′bj,kTj(t)

where

bj,k =

(
(−1)j + 1

π

)
Γ
(

1
2(1 − j + k)

)
Γ
(

1
2(1 + j + k)

)

Γ
(

1
2(2 − j + k)

)
Γ
(

1
2(2 + j + k)

)

Thus we obtain

ψ(t) =
∞∑

k=0

ck

k∑

j=0

′bj,kTj(t)

Now, the Chebychev polynomial can easily be expressed in terms of Fourier modes

Tj(t) = Tj(cos(θ − θi))

= cos(j(θ − θi))

= cos(jθ) cos(jθi) + sin(jθ) sin(jθi)

Therefore, the expansion of the radial functions in terms of Fourier modes is as follows

φ

(√
2 − 2 cos(θ − θi)

)
=

∞∑

k=0

ck

k∑

j=0

′bj,k(cos(jθ) cos(jθi) + sin(jθ) sin(jθi))

=
∞∑

j=0




∞∑

k=j

′ckbj,k



 (cos(jθ) cos(jθi) + sin(jθ) sin(jθi))



Chapter 4

The RBF-QR method applied to the solution of convective PDEs on

the surface of the sphere

4.1 Introduction

All of the most commonly used pseudospectral methods to solve PDEs have weak-

nesses in the context of solving a convective model problem on the surface of the sphere.

The most common PS methods are spherical harmonics, double Fourier series and spec-

tral methods, and they all suffer major problems. For example, by Haar’s theorem (see

Chapter 1), certain node distributions will lead to singular systems, with the spherical

harmonics method. Furthermore, it resolves modes uniformly, like the Fourier approach

on the circle, thus it cannot have any local node refinement. The double Fourier tech-

nique does not allow any node refinement either. Because of the unnecessary clustering

at the boundaries of each element, the spectral element method requires very small time

steps. The RBF method gives rise to unconditionally non-singular collocation matrices,

allows local node refinement, works on scattered data, does not introduce any singular-

ity, allows for particularly large time steps and is extremely easy to implement on any

geometry. Natasha Flyer and Grady Wright [12] showed that, although the computa-

tional cost of the RBF method is a problem (at least for now), less nodes and larger

time steps give a comparable accuracy to the other PS methods, making the method

advantageous to use. In this research project, we use the RBF-QR method to explore

the error of convecting a bell around the surface of the sphere. We study the error on the
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Figure 4.1: Double Fourier series: Necessary map to a lat/long grid.

Figure 4.2: Spectral elements method: implemented by means of the ”cubed sphere”.
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whole range of shape parameter values and for all of the most common radial functions.

This analysis gives us insights on which radial function and which shape parameter to

use for integration over different lengths of time.

Our work on choosing a radial function and a shape parameter when solving a

convective PDE on the sphere can be found as appendix C and has been accepted for

publication in the Journal of Computational Physics [19].

4.2 Summary of paper

4.2.1 Introduction

In this section, we present the RBF method as a competitive way to solve the

convection equation on the surface of the sphere. We refer to Natasha Flyer and Grady

Wright’s paper [12] which concludes that RBFs can be very promising when applied to

this problem.

However, as we saw in the previous chapter, the direct RBF method is an ill-

conditioned approach to a well-conditioned problem. When the shape parameter is

small enough, translates of one radial function are very similar to each other, which

produces an ill-conditioned system. The RBF-QR method was designed to get around

this problem, and to evaluate the interpolant accurately by analytically removing the

ill-conditioning of the matrix.

In Figure C.1, we show a few problems on which the RBF method has been

applied. In each one of these problems, it was necessary to remove the ill-conditioning

(using the Contour-Padé method or using the RBF-QR method) to explore the error

as a function of the shape parameter, to ultimately find the optimal shape parameter

value in each context.
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4.2.2 RBF methodology

In this section, we give a brief introduction of the RBF method and of how it can

be modified to solve PDEs.

4.2.3 Time dependent PDE on a sphere

4.2.3.1 Test problem

We consider the standard convection test problem around the surface of the sphere

([12], [17], [42], [4]). We use a different notation for the spherical coordinate system than

in the preceding chapter: 




x = ρ cosϕ cos θ

y = ρ sinϕ cos θ

z = ρ sin θ

.

In this coordinate system, the convective-type PDE test problem can be expressed as

∂u

∂t
+

(
cosα cos θ − sin θ sinϕ sinα

cos θ

)
∂u

∂ϕ
− cosϕ sinα

∂u

∂θ
= 0 (4.1)

where the convection axis is tilted at the angle α relative to the polar axis, as shown in

Figure C.2.

The initial condition which we choose to convect around the sphere is the same

cosine bell as the one defined in Chapter 3, Equation (3.2).

4.2.3.2 Different node distributions

Because solving (4.1) on random distributions doesn’t give nearly as nice results,

we consider only solving it on near-uniform distributions. Two such distributions are

used in this work, the ME (minimum energy; equilibrium state after letting particules

with equal charges repel each other) and the MD (maximum determinant; maximized

determinant of the Gram-matrix) node distributions (Figure C.4). In the shape pa-
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Figure 4.3: Illustrations of the Cosine bell (initial state) on the sphere surface, viewed
from positive x-direction, and on an ‘unrolled’ ϕ, θ-plane (with the n = 1849 ME node
locations also marked).
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rameter regime where the direct method can be used safely (i.e. ε ≫ 1), the two node

distributions give the same error. However, when ε is small, the error obtained via solv-

ing the PDE on the two types of distribution is drastically different from one node set to

the next. In fact, it has been observed that solving the PDE using spherical harmonics

on the two different node sets gives extremely different results. Since we showed that

the RBF interpolant converges towards the SPH interpolant as ε → 0, it makes sense

that RBFs with small shape parameters will also suffer a difference between the two

distributions.

4.2.3.3 Method of lines formulation and time stepping

The method of lines (MOL) consists in discretizing the spatial operator and solv-

ing a system of ODEs in time. Thus, after rewriting the PDE as ∂u
∂t + L(u) = 0,

we approximate the continuous spatial operator of (4.1), L, using RBFs. We end up

with the system of ODEs d
dtu +Du = 0 which we can either solve numerically, or ex-

actly as u(t) = e−Dtu(0). The matrix D is the differentiation matrix and is defined as

D = B · A−1, where A is defined in Equation (C.9) and B, in Equation (C.8). The

matrix D will have purely imaginary eigenvalues since it is, by construction, a prod-

uct of an antisymmetric with a positive definite matrix. The matrices A and B can

also be defined using the RBF-QR basis. This allows us to remove analytically the

ill-conditioning emerging when ε is small enough, as we showed in Chapter 3.

4.2.3.4 Numerical Tests

As we mentioned earlier, the error depends also on the node distribution which

is being used. In fact, SPH (thus also small shape parameter RBFs) produce very

inaccurate interpolants on the ME node distribution, Figure C.5, while they produce

nice results on the MD node distribution. In order to homogenize the results with

respect to node distributions (i.e. dispose of any singularity of the SPH method with
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respect to the type of node set being used), we over-sample the lat/long grid and use a

Least-Squares fit to smoothen the ‘interpolant’ of the initial condition of the bell, Figure

C.6. This allows us to guarantee that the error does not come from an inaccurately

interpolated initial state.

Figure C.7 shows the error of convection after time = 10 and time = 10, 000 (one

revolution corresponds to time = 2π). In subplot (a), we show the error obtained via

the IMQ RBF, while in subplot (b), via the W6 RBF (Wendland of the 6th order). We

notice that the error doesn’t increase much in the case of the infinitely smooth RBF,

while in the case of the piecewise smooth one, the error increases drastically in time.

We notice the same phenomenon in Figure C.8.

4.2.4 Comparisons between different RBF types

We show in Figures C.9 and C.10 the error of convection after time = 10 and

time = 10, 000 for all of the most common radial functions, in function of the shape

parameter. We observe the same trend as before. The infinitely smooth radial functions

perform admirably; the error increase is hardly visible from time = 10 to time = 10, 000.

On the other hand, all the piecewise smooth radial functions only perform reasonably

for small integration time. We also notice that the error first decays then stabilizes as

the shape parameter ε decreases. In fact, it seems that the minimum error is attained

for smaller shape parameters as the integration time increases.

4.2.5 Analysis of the numerical results via properties of the DMs

Numerically solving this test problem introduces three sources of error: the dis-

cretization (differentiation matrix), the time stepping, and the error introduced when

interpolating the solution in between the grid points. We only consider here the er-

ror introduced by the differentiation matrix. As we mentioned earlier, the method of

lines approach is used, thus (4.1) is discretized as d
dtu + Du = 0 which is then solved
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analytically u(t) = u(0)e−Dt. In 1-D, we consider the analogous convection problem

[14]

ut = ux

Assuming that u(x) = eiωx, the true 1st derivative of u(x) is d
dxu(x) = iωeiωx. The

second order finite difference gives an approximation of the first derivative of u(x) as

u(x+ h) − u(x− h)

2h
= i

sin(ωh)

h
eiωx

Plotting against ω the coefficients of ieiωx, we see that FD2 is only accurate for small

frequency ω. It does not resolve higher frequencies. The higher the order of the spatial

approximation, the closer the coefficient is to ω, the exact coefficient of ieiωx, Figure

C.11. In the limit of increasing orders, we obtain the pseudospectral method, the

Fourier PS method, which resolves exactly every possible mode that can be present

with spacing h. We note that, although FD2 might be more accurate than PS for small

time integration (since it features a smaller Gibbs phenomenon), PS yields an error that

grows slower with time than FD2. The latter is because FD2 cannot resolve the high

frequencies intrinsic to the solution. The error then accumulates and grows faster than

it would if we had used a higher order solver.

On the sphere, using the RBF-QR method, we compute the differentiation matri-

ces associated with different ε values and we analyse their properties. Our work consists

of finding how the time-stepping error will be influenced by these properties. Indeed,

we are looking for a similar pattern to the one illustrated in Figure C.11 for the 1-D

case. We see that as ε→ 0, the eigenvalues become optimal and the highest SPH modes

get resolved. However, as epsilon is larger, we lose the resolution of the highest modes.

Thus, the larger the ε, the faster the error grows for long time integration and we can

therefore expect a smaller accumulation of error when ε is small. The error for the

short time integration therefore comes from the interpolation only, rather than from

the differentiation matrix. Understanding this phenomenon provides us with a guide
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on how to choose ε in different cases such as short versus long time integrations, Figure

C.16.

4.2.6 Conclusions

In this section, we give a brief summary of the results and conclude.

4.3 Additional work

4.3.1 Routine for associated Legendre functions

Having a reliable routine that evaluates associated Legendre functions accurately

is very important when we are working with SPH. The SPH expansions, on which the

RBF-QR method is based, are sometimes only truncated after thousands of terms (e.g.

when ε ≈ 1). Thus, we need a routine which can evaluate the associated Legendre

functions to machine precision, even for very large degrees µ. It came to our attention

that Matlab’s legendre() routine was based on a three-term recursion relation which

contains singularities at x = ±1. Around these points, an asymptotic formula is used,

which adds complexity to the routine. The normalization used is only efficient for small

degrees of the associated Legendre functions.

We present a method which is simpler than Matlab’s and which gives reliable

results also for large degrees µ. This new routine can also be modified easily to give

derivatives of the associated Legendre functions.

Consider the three-term recursion relation, which is the core of Matlab’s routine.

P ν−1
µ (x) =

−1

(µ+ ν)(µ− ν + 1)

(
P ν+1

µ (x) + 2ν
x√

1 − x2
P ν

µ (x)

)

By definition,

P ν
µ (x) = (−1)ν(1 − x2)ν/2 d

ν

dxν
Pµ(x)

Now, let Mν
µ(x) = (−1)ν dν

dxν Pµ(x). Then, P ν
µ (x) = (1 − x2)ν/2Mν

µ(x). Substituting
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(1− x2)ν/2Mν
µ(x) for P ν

µ (x) in the three-term recursion relation, we get this new three-

term recursion relation, this time, for Mν
µ(x).

Mν−1
µ (x) =

−1

(µ+ ν)(µ− ν + 1)

(
Mν+1

µ (x)(1 − x2) + 2νxMν
µ(x)

)

This relation is singularity-free. It has been stated earlier [32], but apparently was

never used as a means of more effective numerical computations. The method consists

of first finding Mν
µ (x) values with the latter formula, and then finding P ν

µ (x) = (1 −

x2)ν/2Mν
µ (x). This routine suffers some ill-conditioning at the moment and requires

some more work before being used efficiently.

4.3.2 Expansion coefficients for IQ, W2, W4, W6 and TPS

4.3.2.1 Hubbert and Baxter’s methodology [26]

Restricting the formula to S2, we obtain

||−→ξ −−→η || =
√

(xξ − xη)2 − (yξ − yη)2 − (zξ − zη)2

=
√

(x2
ξ + y2

ξ + z2
ξ ) + (x2

η + y2
η + z2

η) − 2xηxξ − 2yηyξ − 2zηzξ

=

√
2 − 2

−→
ξ .−→η

As usual, we denote our radial basis function as φ(r). Let ψ(
−→
ξ .−→η ) = φ(

√
2 − 2

−→
ξ .−→η ).

When φ(r) is conditionally positive definite ψ(t) has the Legendre expansion

ψ(t) =
∞∑

k=0

akPk(t)

Now, because of the addition theorem

k∑

l=−k

Y l
k(
−→
ξ )Y l

k(−→η ) =
2k + 1

4π
Pk(

−→
ξ .−→η )

we have

ψ(
−→
ξ .−→η ) =

∞∑

k=0

k∑

l=−k

‘ckY
l
k(
−→
ξ )Y l

k(−→η )
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where, using Rodrigues representation,

ck =
π

2k−2k!

∫ 1

−1
(1 − t2)k

dk

dtk
ψ(t)dt. (4.2)

With the development of the RBF-QR method, it has become necessary to find the

expansion coefficients for the common radial basis functions. Baxter and Hubbert found

the expansion coefficients for most of the most common radial functions (GA, TPS, IMQ

and MQ), but not for certain others, such as IQ or the Wendland functions, which we

will find, using their methodology.

4.3.2.2 IQ

We apply the method to the inverse quadratic radial basis function

φ(r) =
1

1 + ε2r2

Because IQ is strictly positive definite, we change notation ψ(r) = φ(r1/2) and

then find that

dk

dtk
ψ(t) = (2ε2)kk!(1 + 2ε2 − 2ε2t)−k−1

Therefore, using the identity

∫ 1

0
(1 − zu)−a(1 − u)c−b−1ub−1du =

Γ(b)Γ(c− b)

Γ(c)
2F1(a, b; c; z)

we get

ck =
π

2k−2k!

∫ 1

−1

dk

dtk
ψ(t) (1 − t2)kdt

=
4π3/2k!

Γ(k + 3/2)(1 + 4ε2)k+1 2F1(k + 1, k + 1; 2k + 2;
4ε2

1 + 4ε2
)ε2k
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4.3.2.3 Wendland

The SPH expansion coefficients for the Wendland functions W2 and the descrip-

tion of the method that is followed are included in the Appendix B of [19]. We also

explain the modifications that should be made to the RBF-QR code in the case of such

a piecewise function. We have also derived corresponding formulas for W4 and W6.

They are algebraically very complex.

4.3.2.4 TPS

Consider the thin plate spline (TPS) radial function

φ(r) = ε2r2 log(εr)

We find its expansion in terms of SPH with Hubbert and Baxter’s formula

φ(‖x− xi‖) =
∞∑

µ=0

µ∑

ν=−µ

′{cµ Y ν
µ (xi)} Y ν

µ (x)

where

cµ =
π

2µ−2µ!

∫ 1

−1

dµ

dtµ
φ
(√

2 − 2t
)

(1 − t2)µdt

We find that

d

dt
φ
(√

2 − 2t
)

= −ε2(log(2ε2(1 − t)) + 1) (4.3)

dµ

dtµ
φ
(√

2 − 2t
)

= (µ− 2)!ε2(1 − t)−µ+1, µ > 1 (4.4)

Thus,

c0 = 4πε2(−1 + 2 log(4ε2)) (4.5)

c1 = −4πε2

9
(1 + log(4096) + 6 log(ε2)) (4.6)

cµ =
πε224

µ(µ2 − 1)(µ+ 2)
, µ = 2, 3, ... (4.7)

• For any shape parameter value, the series will converge with O(1/µ4).
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• The shape parameter appears as the factor ε2 in all the coefficients. We can

thus pull it out of the expansion nearly completely (the first two terms only

will still contain ε). This presence of ε in the first two terms is thus the only

ε-dependence of the method.

• We can most definitely adapt the RBF-QR method to this radial function.

Actually, no QR factorization would even be necessary since we can remove the

ε powers right away. However, the slow convergence will make it difficult to use

the RBF-QR method at all. We would need about (104)2 = 108 terms in the

expansion to reach machine-precision.

4.3.3 Removal of the singularities at the poles when computing the

spherical harmonics and their derivatives

Consider the test problem (4.1). We notice that using radial basis functions

u(−→x ) =
∑N

i=1 λiφ(||−→x −−→x i||), the singularity at the poles due to cos θ on the denomi-

nator is removed, which leads to a singularity-free problem.

Removing the singularity at the poles when we use SPH expansions is a bit tricky.

Indeed, not only do we have a problem with the cos θ on the denominator of the first

term, but we also have a singularity at the poles coming from the derivative of the

associated Legendre polynomial in the second term. Recall that the SPH in spherical

coordinates are given by

Y ν
µ (θ, ϕ) =






√
2µ+1
4π

√
(µ−ν)!
(µ+ν)!P

ν
µ (sin θ) cos(νϕ) , ν = 0, 1, . . . , µ

√
2µ+1
4π

√
(µ+ν)!
(µ−ν)!P

−ν
µ (sin θ) sin(−νϕ) , ν = −µ, . . . ,−1

4.3.3.1 ∂u
∂θ -term

∂

∂θ
Y ν

µ (θ, ϕ) (4.8)
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=






√
2µ+1
4π

√
(µ−ν)!
(µ+ν)!

∂
∂θ (P ν

µ (sin θ)) cos(νϕ) , ν = 0, 1, . . . , µ
√

2µ+1
4π

√
(µ+ν)!
(µ−ν)!

∂
∂θ (P−ν

µ (sin θ)) sin(−νϕ) , ν = −µ, . . . ,−1

. (4.9)

=






√
2µ+1
4π

√
(µ−ν)!
(µ+ν)! cos θ ∂

∂x(P ν
µ (x))|x=sin θ cos(νϕ) , ν = 0, 1, . . . , µ

√
2µ+1
4π

√
(µ+ν)!
(µ−ν)! cos θ ∂

∂x(P−ν
µ (x))|x=sin θ sin(−νϕ) , ν = −µ, . . . ,−1

(4.10)

We combine identities from [2] to give us

cos θ
d

dx
(P ν

µ (x))|x=sin θ =
(µ+ ν)(µ− ν + 1)P ν−1

µ (sin θ) − P ν+1
µ (sin θ)

2

which is singularity-free everywhere. Special consideration has to be given for the cases

where ν = 0 and ν = µ.

• ν = 0

cos θ
d

dx
(P 0

µ(x))|x=sin θ =
(µ)(µ+ 1)P−1

µ (sin θ) − P 1
µ(sin θ)

2
= −P 1

µ(sin θ)

• ν = µ

cos θ
d

dx
(Pµ

µ (x))|x=sin θ =
2µPµ−1

µ (sin θ) − Pµ+1
µ (sin θ)

2
= µPµ−1

µ (sin θ)

4.3.3.2 ∂u
∂ϕ-term

Using the technique considered in Section 4.3.1 allows us to compute
P ν

µ (sin θ)

cos θ

safely.



Chapter 5

RBF method with spatially variable shape parameters applied to a

convective type PDE on the surface of the sphere

5.1 Introduction

Through this document, we have identified the two ways in which the error can

grow as the radial functions become flat. The first is the ill-conditioning linked to the

direct implementation of the RBF algorithm, which we resolved using the RBF-QR

method. The second is the Runge phenomenon. According to Fornberg and Zuev [22],

the negative effects of this phenomenon can be reduced considerably when we refine

nodes and introduce a spatially variable shape parameter in the RBF representation of

the interpolant

s(x) =
n∑

i=1

λi φǫi
(‖x− xi‖), (5.1)

In this chapter, we introduce the modified RBF-QR algorithm which allows us to

compute the interpolant and the solution to PDEs for both small and spatially variable

shape parameters. We also apply the spatially variable shape parameter algorithm to

the purely convective equation on the circle and on the surface of the sphere.

This research project is still in progress. Although it connects with recent work by

Natasha Flyer and Erik Lehto, it is being pursued by the author as the sole investigator.
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5.1.1 RBF-QR for spatially variable ε

Following the development of the RBF-QR method in Chapter 3, we want to

create the upper triangular matrix R out of B, with the least amount of information

loss. To do so, it wil be necessary to combine the rows together, such that the orders

of magnitude of the combined terms are similar. We order the rows from the ones

associated with the smallest ε to the ones associated with the largest ε. We then

perform the QR factorization block by block and normalize R (identical as extracting

the E matrix containing the powers of ε, when ε is fixed.)

The new QR algorithm goes as follows: Let matrix B have the form

B =





· · · · · · B1 · · · · · ·

B2

B3

...

· · · · · · Bm · · · · · ·





with B1, B2, ... being the composing blocks of matrix B.

• Step 1: Perform a QR factorization on the 1st block

B =





Q1

I

I

. . .

I









· · · · · · B1 · · · · · ·

B2

B3

...

· · · · · · Bm · · · · · ·





• Step 2: Normalize R1

• Step 3: zero out the elements of the 1st column below R1. (Call that transfor-
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mation L1)

B =





Q1

I

I

. . .

I









L1









. . . · · · R1 · · · · · ·

0 · · · B1
2 · · · · · ·

0 B1
3

0
...

0 · · · B1
m · · · · · ·





• Step 4: Normalize R2

• Step 5: zero out the elements of the 2nd, 3rd and 4th columns below R2.(call

that transformation L2)

B =





Q1

I

I

. . .

I









L1





×

×





I

Q2

I

. . .

I









L2









. . . · · · R1 · · · · · ·

0
. . . R2 · · · · · ·

0 0 · · · B2
3 · · ·

0 0
...

0 0 · · · B2
m · · ·





• and so on.

• Finally we have B = C.R, where C is not a unitary matrix and holds the powers

of ε, and where R is uppertriangular.
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The RBF-QR method gives an opportunity to have an algorithm for solving stably

the interpolation problem for spatially variable ε on the surface of a sphere. The key

modifications to the algorithm for fixed ε is first the ordering of the rows in matrix B,

such that they correspond to the smallest to the largest ε. It is secondly the block by

block QR factorization of matrix B. Because in each block, the εi are in order and

hopefully close to each other in magnitude, terms of dramatically different orders of

magnitude won’t be combined.

5.2 Solving a convective type PDE on the surface of a node refined

sphere using the variable shape parameter RBF method.

5.2.1 Introduction

The goal is once again to solve a convective type PDE on the surface of the sphere.

The reason for refining the nodes and to use the variable shape parameter is to get rid

of, or at least to reduce the Runge phenomenon, more and more destructive as ε → 0.

Thus, we want the node distribution to contain a refined region. In order to deal with

this node refinement, we let the shape parameter vary spatially. It was shown in [22]

that the rule of the nearest neighbor gives nice results. We will adopt this rule and let

the shape parameter associated with a specific node point be proportional to the inverse

of the distance from this node to its nearest neighbor. We study the error of convecting

a cosine bell around the sphere, going through the refined area. However, if the shape

parameter varies spatially, the eigenvalues will not be purely imaginary anymore (the

eigenvalues of a positive definite matrix with an antisymmetric matrix must be purely

imaginary, [19]) and the ones with a large real part will raise the error exponentially.

Thus we will either have an error caused by the Runge phenomenon (and not by the

eigenvalues’ real parts) or an error caused by the eigenvalues’ real parts (and not by the

Runge phenomenon.) The ultimate objective will be to understand the error enough to
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find an appropriate filter.

5.2.2 Node distribution

In order to create a ’minimum energy‘-type distribution with a node refinement,

we allocate a charge to each node and allow them to repulse each other. In the case

of the minimum energy node distribution, the charges associated with each node are

identical. After letting each particle repel its neighbors, we end up with a balanced

near-uniform node distribution. Now, letting the charges of the nodes in a certain area

be smaller than the others will have the effect of attracting more nodes in this specific

region, thus creating a refined node distribution.

5.2.3 The rule of the nearest neighbor

The nearest neighbor rule introduced by Fornberg & Zuev in [22] implies that the

shape parameter associated with a particular node must be proportional to the distance

to the node’s nearest neighbor. This insures that the areas where the nodes are sparse

and distant from one another will be covered by flat radial functions while the refined

areas will have peaked and narrow radial functions, perfect to interpolate on denser

node sets. We redefine the shape parameter as εi = ε.
max(||xj−xk||)j,k=1,...,Nj 6=i

min(||xj−xi||)j=1,...,Nj 6=i
when using

the RBF-Direct method. Thus we have εi = ε. d
min(||xj−xi||)j=1,...,Nj 6=i

, with the scalar

d = max(||xj − xk||)j,k=1,...,Nj 6=i being the normalizing factor that insures that the

nearest neighbor inverse function has a minimum value of one, since using the direct

method, it is important to control the smallest value of the shape parameter. We

define εi = ε.
min(||xj−xk||)j,k=1,...,Nj 6=i

min(||xj−xi||)j=1,...,Nj 6=i
when using the RBF-QR method, because it is now

the largest value of the shape parameter vector that has to be controled and thus is

set to one.



63

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
FRONT

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
BACK

N=400

Figure 5.1: Node distribution on the surface of the sphere with a refined area.
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5.2.4 Differentiation matrix

We choose to use the method of lines to solve this problem. Thus, we discretize

in space (hence produce a differentiation matrix) and solve a system of ODEs in time.

Analysing the error produced by discretizing the spatial operator will amount to study-

ing the eigenvalues of the differentiation matrix, which we obtain using RBFs. Thus,

as in Chapter 4, the method of lines representation of the problem is ut = D · u, which

has the analytical solution −→u (t) = eD·t · −→u 0. Assuming that the differentiation matrix

D is not too far from being normal (meaning that it has orthogonal eigenvectors), by

projecting the vector −→u 0 onto the eigenspace of D, we get −→u 0 =
∑N

j=1 αj
−→v j, where −→v j

is the eigenvector associated with the eigenvalue λj .

By definition,

eD·t =
∞∑

n=0

(D · t)n
n!

(5.2)

Consequently,

eD·t · −→v j =
∞∑

n=0

(D · t)n
n!

.−→v j

=
∞∑

n=0

tn

n!
.(Dn · −→v j)

=
∞∑

n=0

tn

n!
.(λn

j · −→v j)

= eλj ·t · −→v j

Thus,

−→u (t) = eD·t · −→u 0

=
N∑

j=1

αj(e
D·t · −→v j)

=
N∑

j=1

αj(e
λj ·t · −→v j)

This representation of the solution allows us to see more clearly that the positive real

parts of the eigenvalues will make the error grow exponentially in time, and that the
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leading eigenvector will be the one associated with the largest positive real part of these

eigenvalues.

5.2.5 Numerical results

Conceptually, we can think of the error as follows. The differentiation matrix that

we obtain allows us to convect and resolve the bell, as accurately as the grid will allow.

The fact that some region of the domain has been refined implies that higher modes will

not be able to be resolved on the sparser areas (Figure 5.1 shows the node distribution

used throughout this section). These high modes will be misrepresented as low modes

and create errors. It seems that a filter, which will take into consideration the different

regions will be necessary to solve this problem. We compute the differentiation matrix

via the RBF-QR method and examine the error in function of the way in which we

choose the shape parameter values.

5.2.5.1 Scaling of the shape parameters

• We define the shape parameter values as {εj = ε.f(min ||xj − xi||)}N
j=1, where

the function f is the ’shape parameter scheme‘, such as the ’rule of the nearest

neighbor‘ for example. As ε → 0, the RBF interpolant tends towards the SPH

interpolant. The proof is identical to the one presented in [18] for the case of

fixed shape parameters.

Thus, as ε→ 0

∗ The eigenvalues become purely imaginary and all fall on integer values.

∗ The Runge phenomenon appears, brought by the polynomial character of

the SPH on a non-uniform distribution.

∗ Thus, although the error is not produced by the dominance of the eigen-

vector associated with the eigenvalues’ largest real part (because all the
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eigenvalues are purely imaginary), it increases tremendously because of the

Runge phenomenon. Thus, this ε → 0 limit might be far from being the

best choice.

• Notice that if we now define the shape parameter values as {εj = a+ε.f(min ||xj−

xi||)}N
j=1, where a is real (thus a perturbation of order ε away from a), by letting

ε→ 0

∗ The eigenvalues become purely imaginary. This is because the shape pa-

rameter values become fixed. We showed that, in this case, the eigenvalues

of a positive definite matrix with an antisymmetric matrix must be purely

imaginary. We loose these criteria with the variable shape parameters [19].

∗ The Runge phenomenon appears once again, brought by the non-uniform

character of the distribution with a fixed shape parameter.

∗ Figure 5.2 shows how we can ’control‘ the magnitude of the largest real part

of the eigenvalues with the magnitude of ε. We see a clear dependence of

the order of the perturbation ε, on the magnitude of the largest real parts

of the eigenvalues.

5.2.5.2 Shape parameter schemes

The rule of the nearest neighbor is the scheme we have used so far to assign

values to each node’s shape parameter. As we will see, the error depends strongly on

the scheme which we use to find the shape parameters, and on how we scale them.

Earlier, we explained how the scaling affects the error. We now consider the error

induced by the different schemes.

The rule of the nearest neighbor (εj = ε. 1
min ||xj−xi||) [22]

It consists in assigning small shape parameter values to the nodes that belong

to ’sparse‘ areas and large values to the nodes that belong to the refined area. This
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should allow the ’rougher‘ surfaces to be better represented since the radial functions

are steeper in these (refined) regions.

This rule seems to be the least effective so far. The differentiation matrix that

we obtain via this method has eigenvalues with large real parts. The eigenvectors ( and

their conjugates) associated with these eigenvalues become quickly dominate the other

eigenvectors, destroying the solution.

1rev/2π t = 0 t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14

Error 0 0.042 0.059 0.167 0.408 0.972 1.532 4.464

In Figure 5.3 we show the 2-D Fourier transform of the solution (interpolated

on a regular grid). Although taking the Fourier transform isn’t really appropriate in a

non-regular setting, it still gives us an idea of how the different modes evolve. We see

that the low modes are quickly overpowered by a few eigenvectors. In Figure 5.4, we

show the eigenvector associated with the largest eigenvalue real part (4.628e−001). We

recognise it in Figure 5.3 as one of the dominating vectors.

The rule of the nearest neighbor, although very effective on the interpolation

problem is not as effective when it comes to convecting around the sphere. Indeed, the

differentiation matrix resulting from this method has quite large eigenvalue real parts,

which we saw earlier, are harmful to the solution. If the eigenvectors associated with

the eigenvalues having the largest real parts are high frequency modes, we can easily

filter them out. However, if they are low modes, they are instrumental to representing

the solution correctly, and cannot be filtered out. We illustrate their detrimental effect

in Figure 5.3.

Fixed shape parameter (εj = ε)

We now ’control‘ the magnitude of the largest eigenvalue real part, using what

we observed in Figure 5.2. In this example, we take ε = 0.6.
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1rev/2π t = 0 t = 10 t = 20 t = 30 t = 40 t = 50 t = 60 t = 70

Error 0 0.036 0.041 0.037 0.043 0.039 0.046 0.044

The error remains stable throughout the whole process (notice the much larger

time steps.) The largest real part of the eigenvalues is now 3.59e−011, which is harmless,

and the solution mostly retains its character throughout the whole evolution (see Figure

5.5.) We do see the effect of the Runge phenomenon, growing as time goes on.

Modified rules of the nearest neighbor (εj = a + ε 1
min ||xj−xi|| or εj =

a+ ε · rand, discussed in [22] )

These methods often give nice results. They will have to be explored further

though.

5.2.6 Conclusion

There seem to be two distinct types of error, depending on the scheme we choose

to assign the shape parameter values:

• Error generated by the dominance of large eigenvalue real parts. We show

the contour plots of the eigenvectors (using the RBF-QR method with variable

shape parameters obeying the rule of the nearest neighbor and with a scaling

factor of 0.6) associated with the most dominant eigenvalues in Figures 5.6, 5.7

and 5.8. It seems as if they are highly oscillatory enough that a filtering of high

frequencies will probably suffice. When comparing the eigenfunctions against

the scattered node locations, we recognize similarities to sawtooth-like modes -

the very highest modes any node set can represent.

• Error generated by the Runge phenomenon. By essence, the Runge phenomenon

takes the form of high frequency modes. It should therefore also be possible to

filter it out.
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shape parameter here with ε = 0.6
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Chapter 6

Conclusion

6.1 Projects presented in this document

This dissertation contains analytical and numerical advances in radial basis func-

tions. The analysis of the decay rates (Chapter 2) of cardinal coefficients will hopefully

advance research towards a fast algorithm. The RBF-QR method opened new doors

for accurate and stable interpolation (Chapter 3), solving PDEs on the surface of the

sphere (Chapter 4) and for error analysis of the RBF method. Finally, the method

applied to refined node distributions with variable shape parameters (Chapter 5) will

hopefully prove possible to combine with new filtering techniques and thereby help to

establish RBFs as an extremely practical tool for solving PDEs.

6.2 Parallel between RBFs and PS methods

In view of the different results from Chapters 3 and 4, we notice that the best

results for interpolation happen away from the limit ε → 0, while in the case of long

time integration, it is exactly approaching this limit that will give us the best possible

error. Figure 4.2-3 in [14], illustrates a similar case in 1D using finite differences, with

the PS method as the limiting order finite difference. Both the Runge and the Gibbs

phenomena play a role in this. Even so, a full theoretical answer to why this happens

is still a partly open issue.
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6.3 Future projects

• Finish the project developed in Chapter 5, ”RBF method with spatially variable

shape parameters applied to a convective type PDE on the surface of the sphere”

• Study the RBF PDE solver on arbitrary surfaces.

• Explore the possibility of finding algorithms that are both stable for small ε and

at the same time faster than the RBF-Direct method.
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Many types of radial basis functions (RBFs) are global, in terms of having large magnitude across the
entire domain. Yet, in contrast, for example, with expansions in orthogonal polynomials, RBF expansions
exhibit a strong property of locality with regard to their coefficients. That is, changing a single data
value mainly affects the coefficients of the RBFs which are centered in the immediate vicinity of that
data location. This locality feature can be advantageous in the development of fast and well conditioned
iterative RBF algorithms. With this motivation, we employ here both analytical and numerical techniques
to derive the decay rates of the expansion coefficients for cardinal data, in both 1-D and 2-D. Furthermore,
we explore how these rates vary in the interesting high-accuracy limit of increasingly flat RBFs.

Keywords: Radial basis functions, RBF, cardinal interpolation

1. Introduction

Radial basis functions (RBF) provide a well established approach to the task of interpolating scattered
data in multiple dimensions. With aradial functionφ(r) and with data valuesfk given at locationsxk,
k = 1,2, . . . ,n, the function

s(x) =
n

∑
k=1

λk φ(||x−xk||), (1.1)

where‖·‖ denotes the standard Euclidean norm, interpolates the data if we choose the expansion coeffi-
cientsλk in such a way thats(xk) = fk, k= 1,2, . . . ,n. During the last decade, it has become increasingly
well recognized that interpolants of this form – whenφ(r) is infinitely differentiable – provide a natural
generalization, to arbitrary geometries, of pseudospectral (PS) methods (Driscoll & Fornberg (2002),
Fornberg (1996), Fornberg et al. (2004)) for solving PDEs. These differentiable RBFs can be scaled by
means of ashape parameter, in this paper denoted byε, so that we frequently writeφ(r;ε). It turns out
thateveryclassical PS method (Fourier, Chebyshev, etc.) arises as a special case of RBF interpolation
Driscoll & Fornberg (2002), Fornberg et al. (2004) in the limit asφ(r;ε) becomes flat (i.e. asε → 0).

Successive basis functions in classical basis sets (such as Fourier and Chebyshev sets) are global
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and increasingly oscillatory. Altering a single data value will change all expansion coefficients by
roughly the same amount - i.e. there is no concept of ‘locality’ in the resulting expansion. The RBF
basis is fundamentally different in a number of ways. In return for giving up the orthogonality of the
basis functions, unconditional non-singularity is gained with scattered node locations for many cases
of radial functionsφ(r). Although the basis functions typically are global (e.g. the popular choice of
φ(r) =

√
1+(εr)2 ), the interpolant will nevertheless feature strong locality in the sense that changing

the data at one point will mainly influence expansion coefficients of basis functions centered in its
immediate vicinity. If the locality was perfect (only one coefficient being affected), the linear system to
solve would be diagonal, i.e. perfectly conditioned. Since lack of locality can cause ill-conditioning, a
study of locality will give insights into how different radial functions compare in this regard. The degree
of locality enters also in the convergence rates of some iterative procedures for rapid computation of the
expansion coefficients (Buhmann (2003) Chapter 7, Faul & Powell (2000)).

The concept of locality associated with RBF interpolation on equispaced lattices was first addressed
by Buhmann (Buhmann (1988), Buhmann (1993), Buhmann & Powell (1990)), who studied the behav-
ior of the RBF interpolant to cardinal data (a single data value being one and all others equal to zero)
in the asymptotic limit as||x|| → ∞ along a coordinate axis. While our analysis also considers cardinal
data, we instead concentrate on studying the behavior of the resulting RBF expansion coefficients,λk,
for increasing|k|. It should be noted that there is a striking similarity between the integrals that describe
the coefficients and those that represent the interpolant for cardinal data. This similarity is discussed and
developed further in the context of exploring Gibbs phenomena for RBFs Fornberg & Flyer (in press).
In cases where closed form expressions for the integrals that represent the coefficients are not possible
(which is the usual circumstance), we present an asymptotic approach using contour integration that
captures the behavior ofλk for both small and largek, noting very different trends in each case. It is
the former case (k small) that almost always determines the localization property of the RBF expansion
(thin plate splines being the exception). Also not previously observed in the literature is that the decay
rate ofλk for 2-D interpolation is dependent not only on radial distance but also on the angle in coeffi-
cient space (and likewise in higher dimensions). In addition, our study also illuminates the dependence
of the decay rate on the shape parameterε for infinitely smooth RBFs.

RBFs are mainly of interest when the data locations are scattered. Since effective theoretical anal-
ysis for such cases does not appear to be practical, this study is focused on cases with node points on
equispaced lattices (in one and more dimensions). In a follow-up studies, we will consider scattered
nodes, in particular when distributed over the surface of a sphere. Preliminary numerical results show
trends which qualitatively match those observed in the current paper.

The paper is organized as follows. Section 2 focuses on closed-form expressions for the RBF ex-
pansion coefficients in one or more dimensions using Fourier analysis. Explicit formulas are obtained
for a few RBF cases, exhibiting a variety of decay behaviors for the expansion coefficients. However,
such explicit expressions are rare even in 1-D, making it necessary to obtain asymptotic estimates. It is
shown in Section 3 how contour integration offers a particularly effective way to estimate the size of the
cardinal expansion coefficients in 1-D for both small and largek. These observations are summarized in
Section 4, with a discussion of the situation in higher dimensions given in Section 5. Section 6, with a
summary of observations, is followed by Appendix A proving non-singularity of a less commonly used
type of radial function. Appendix B presents the asymptotic analysis for the generalized multiquadric
RBF.

8 2
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2. Closed form expressions for cardinal coefficients

2.1 Basic formulas

We consider first the situation in 1-D and base the analysis in this section on the assumption of a constant
node spacingh= 1. The radial functionφ(r) takes, at the lattice pointsxk = k∈ Z, the valuesφ(k). The
cardinal expansion coefficientsλk, k∈ Z, will then satisfy

∞

∑
k=−∞

λk φ(n−k) =

{
1 n = 0
0 n 6= 0, n∈ Z

. (2.1)

In terms of the 2π-periodic functions

Λ(ξ ) =
∞

∑
k=−∞

λk eikξ

and

Ξ(ξ ) =
∞

∑
k=−∞

φ(k) eikξ ,

the convolution in (2.1) can be expressed as

Λ(ξ ) ·Ξ(ξ ) = 1.

We adhere to the convention of defining the Fourier transform through the relationsf (x)= 1√
2π

∫ ∞
−∞ f̂ (ω) eiωxdω,

f̂ (ω) = 1√
2π

∫ ∞
−∞ f (x) e−iωxdx. Furthermore, radial functions are symmetric, i.e.φ(r) = φ(−r) implying

λk = λ−k. It follows then from the Poisson summation formula that

Ξ(ξ ) =
√

2π
∞

∑
k=−∞

φ̂(ξ +2πk), (2.2)

and we obtain the cardinal expansion coefficients explicitly (as has been observed earlier, e.g. Buhmann
& Powell (1990), Buhmann (2003)) as

λk =
1

(2π)3/2

∫ 2π

0

eikξ

∞
∑

j=−∞
φ̂(|ξ +2π j|)

dξ . (2.3)

In cases where the regular Fourier transform forφ(r) fails to exist, the generalized Fourier transform
can be used (e.g. Arsac (1966), Jones (1966), Lighthill (1958)).

We can note that the expression for the interpolant becomes

s(x) =
1

2π

∫ ∞

−∞

φ̂(ξ )eixξ

∞
∑

j=−∞
φ̂(|ξ +2π j|)

dξ . (2.4)

This differs from (2.3) mainly in two ways: 1) the factor ofφ̂(ξ ) in the numerator and 2) the integral
is taken over(−∞,∞). As a result, there is a close relationship between the expansion coefficients,λk,
and the interpolant,s(x). Fuller exploration of this relationship will be postponed to a follow-up paper,
as it would distract from our current theme.

8 3
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For cardinal expansions inn-D, (2.3) generalizes to

λk1,...,kn =
1

(2π)(3n)/2

∫ 2π

0
. . .
∫ 2π

0

eik·ξ

∞
∑

j1=−∞
. . .

∞
∑

jn=−∞
φ̂(‖ξ +2π j‖)

dξ . (2.5)

Table 1 lists some examples of radial functionsφ(r) and their (generalized) Fourier transforms. Non-
singularity of the RBF interpolant in the SH case (for scattered data inn dimensions) was first shown in
Gneiting (1997). A new shorter proof is furnished in Appendix A.

The multidimensional Fourier transforms in Table 1 are most easily carried out by means of the
Hankel relation

φ̂(‖ξ‖) = (2π)−n/2
∫ ∞

−∞
. . .
∫ ∞

−∞
φ(‖x‖) e−iξ ·xdx (2.6)

=
1

ρ(n−2)/2

∫ ∞

0
φ(r) rn/2 J(n−2)/2(rρ)dr,

whereρ2 = ξ 2
1 +ξ 2

2 + . . .+ξ 2
n and r2 = x2

1 +x2
2 + . . .+x2

n.
With the use of some Bessel function identities, (2.6) can alternatively be expressed as follows:

n = 2m+1 odd:

φ̂(ρ) = (−2)m

√
2
π

dm

d(ρ2)m

∫ ∞

0
φ(r) cos(ρr)dr (2.7)

n = 2m+2 even:

φ̂(ρ) = (−2)m dm

d(ρ2)m

∫ ∞

0
φ(r) r J0(ρr)dr. (2.8)

2.2 Some 1-D special cases with simple explicit formulas

In rare cases, both the infinite sum and the integral in (2.3) can be obtained in closed form. However,
these examples are exceptions rather than the rule. They highlight the need for a more general approach
that can provide approximations on how the coefficients decay away fromk = 0 as|k| increases for
arbitrary radial functions.

2.2.1 Cubics For cubicsφ(r) = |r|3, we obtain (as was noted in Fornberg et al. (2002))

λ0 = −4+3
√

3, λ1 =
19
2

−6
√

3 andλk =
(−1)k3

√
3

(2+
√

3)k
, k > 2. (2.9)

(recalling thatλ−k = λk).

2.2.2 IQ In this case, the sum (but not the integral) can be evaluated in closed form. As was also
noted in Fornberg et al. (2002), we then get

λk =
(−1)kε sinh(π

ε )

π2

∫ π

0

coskξ

cosh(ξ/ε)
dξ , k∈ Z. (2.10)
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Type of radial function Fourier transform φ̂(ρ) in n-D
Piecewise smooth

MN monomial |r|2 j+1 (−1) j+122 j+ n
2+1( j+ 1

2)Γ ( j+ 1
2)Γ ( j+ n+1

2 )
π

1
|ρ|2 j+n+1

TPS thin plate spline |r|2 j ln |r| (−1) j+122 j+ n
2−1 j! Γ

(
j + n

2

)
1

|ρ|2 j+n

Infinitely smooth

GMQ generalized MQ (1+(εr)2)β 2β+1

Γ (−β )εn/2−β

Kn/2+β

( |ρ|
ε

)

|ρ|n/2+β

MQ
√

1+(εr)2 -
√

2
√

π ε
n−1

2

K n+1
2

( |ρ|
ε

)

|ρ|
n+1

2

IMQ 1√
1+(εr)2

√
2

√
π ε

n+1
2

K n−1
2

( |ρ|
ε

)

|ρ|
n−1

2

IQ 1
1+(εr)2

1

ε
n
2+1

K n
2−1

( |ρ|
ε

)

|ρ|
n
2−1

GA Gaussian e−(εr)2 e−ρ2/(4ε2)

(
√

2ε)n

SH sech sechεr π
n
2

(2ρ)
n
2−1

ε
n
2+1

∞
∑

k=0
(−1)k(2k+1)

n
2 K1− n

2
( πρ

2ε (k+ 1
2))

BSL Bessel
Jd

2−1
(εr)

(εr)
d
2−1






(
1− |ρ|2

ε2

) d−n
2 −1

εn2
d
2−1

Γ ( d−n
2 )π

n
2
, if |ρ| 6 ε

0, if |ρ| > ε

Table 1. Regular or generalized Fourier transforms for some cases of radial functions
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2.2.3 GA The exact result can be written as a ratio of two sums

λk =
e(εk)2

2
·

∞
∑
j=k

(−1) j e−ε2( j+ 1
2)2

∞
∑
j=0

(−1) j( j + 1
2) e−ε2( j+ 1

2)2
, k∈ Z. (2.11)

This is most easily verified by substituting (2.11) into (2.1), noting that the denominator in (2.11) does
not depend onk, and switching the order in the resulting double sum. A way to arrive at (2.11) (and also
(2.12) below) is outlined in Section 3.4.

2.2.4 SH The result becomes particularly simple in this case. We find

λk =
1

∞
∑

j=−∞
(−1) jsech2(ε j)

(−1)ksech(εk), k∈ Z. (2.12)

In the case thatε is small, the sum can be evaluated very fast by means of either of the identities

∞

∑
j=−∞

(−1) jsech2(ε j) =
4π2

ε2

∞

∑
j=0

( j + 1
2)csch

(
π2

ε ( j + 1
2)
)

=
2π2

ε2

∞

∑
j=0

coth
(

π2

ε ( j + 1
2)
)

sinh
(

π2

ε ( j + 1
2)
)

3. Asymptotic analysis in 1-D by means of contour integration

We describe this approach first in the case of MQ and apply then the same methodology to other cases
of radial functions.

3.1 MQ

The radial function is in this caseφ(r) =
√

1+(εr)2. For algebraic simplicity, we assumeε = 1 (but
comment on other choices below). From (2.3) follows

λk = − 1
4π

∫ 2π

0
h(ξ ) eikξ dξ

where

h(ξ ) =
1

∞
∑

j=−∞

K1(|2π j+ξ |)
|2π j+ξ |

.

The functionh(ξ ) is 2π-periodic and can, over[0,2π], be written (without taking magnitudes) as

h(ξ ) =
1

∞
∑
j=0

K1(2π j+ξ )
2π j+ξ

+
∞
∑
j=1

K1(2π j−ξ )
2π j−ξ

. (3.1)
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FIG. 1. Magnitude ofh(ξ ), as given by (3.1), over the domain 06 Reξ 6 2π, −8 6 Imξ 6 8.

In this form, h(ξ ) can be extended as a single-valued analytic function throughout the strip 06

Reξ 6 2π. Figure 1 illustrates the magnitude of this function, and Figure 2 shows its schematic charac-
ter.

We change the integration path, as is indicated in Figure 2, and note that the two leading contribu-
tions to the integral ask increases will come from (i) the first pole only and (ii) from the non-cancelling
contributions in the vicinity of the branch points atξ = 0 andξ = 2π. Each type of singularity con-
tributes a different type of decay behavior to the asymptotic approximation ofλk for increasingk, as
noted below.

• Contribution from the pole singularity

Along the lineξ = π + i t , the functionh(ξ ) is purely real and 1/h(ξ ) features decaying oscilla-
tions whose roots mark the pole locations. The first pole appears nearπ +1.04 i and has a residue
of approximately−34.6, contributing a term of 17.3 (−1)k+1 e−1.04k to λk. The second pole at
t ≈ 3.42 would give a contribution ofO(e−3.42k), negligible compared to that of the first pole with
further poles giving even smaller contributions.

• Contribution from the branch points

The singularity ofh(ξ ) around the origin comes from one term only in the denominator of (3.1),
that is ξ

K1(ξ )
= ξ 2+(1

4 −
γ
2 + ln2

2 − lnξ
2 )ξ 4+ . . . The branch singularity is of the form−1

2ξ 4 lnξ =

8 7
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!

FIG. 2. Character of the functionh(ξ ) in the complex plane. The original and the modified integration paths are shown. The
additional paths marked{1}, {2}, {3}, and{4} enter in the discussion in Appendix B.

−1
2ξ 4(ln |ξ |+ i argξ ) (and similarly aroundξ = 2π). What does not cancel between the two sides

but instead adds up (hence an extra factor of 2) amounts to 2(− 1
4π )

∫ i·{someδ > 0}
0 (−1

2)ξ 4i π
2 e−ikξ dξ .

Lettingξ = it and noting that, ask→ ∞, we can change the upper integration limit to infinity, this
simplifies to− 1

8

∫ ∞
0 t4e−ktdt = − 3

k5 .

Combing these contributions gives the asymptotic approximation toλk for increasingk:

λk ≈ (−1)k+1 17.3 e−1.04k + . . .︸ ︷︷ ︸ − 3
k5 + . . .

︸ ︷︷ ︸
exponential part algebraic part

(3.2)

Figure 3 compares, using log-linear and log-log scales, the true values for|λk| (as calculated with
an accurate direct numerical approach) with the 2-term approximation in (3.2). The agreement is seen
to be near-perfect. The same procedure can be carried through for any value of the shape parameterε.
Corresponding results forε = 0.1 and in the limit asε → 0 are included in Table 2.

We describe next, in more abbreviated form, the remaining cases of smooth radial functions.

3.2 IQ

Proceeding in a manner analogous to the MQ case, we find that, for generalε,

8 8
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FIG. 3. Comparison between correct values of|λk| for MQ in 1-D, ε = 1 (dots) and the 2-term asymptotic formula (3.2) (solid
line). The subplot to the left is log-linear and the one to the right is log-log.

λk ≈
(−1)kε2sinh(π

ε )

2π cosh( kπε
2 )

− tanh(π
ε )2

π2

1
k2 . (3.3)

Figure 3.4 compares this approximation with an explicit computation of theλk. Panels (a) and (b) depict,
respectively, as a function of bothk andε, the exponential and algebraic decay surfaces corresponding
to the first and second terms of (3.3). Panel (c) shows the union of these surfaces, which compares
favorably with (d), the actual expansion coefficients when computed directly.

3.3 GMQ

The generalized multiquadric RBF isφ(r) = (1+(εr)2)β . Since the analysis is very similar to the MQ
case, it is given in Appendix B . Figure 5 shows, forε = 1, log|λk| as a function ofβ andk. Note the
sharp dips in the algebraic decay regime at positive half integer values ofβ . There are no analogous
features in the exponential decay regime. In both regimes the expansion coefficients approach infinity
at nonnegative integer values ofβ .

The exponential decay of the GMQ RBF is given by the single equation (B.2), while a collection of
equations, (B.5), (B.6), (B.7), (B.8), and (B.9), is needed to describe the algebraic decay, each equation
corresponding to a different set ofβ values. Positive half-integer values ofβ are optimal in that they
result in logarithmic branch points rather than algebraic, leading to much more rapid decay than achieved
by other positive values (Figure 5). Indeed, judging from equation (B.5), it would seem that larger
positive half-integer values would be better than smaller ones. However, in practice, to generate an
interpolant to a finite number of scattered data points, a linear system is solved in order to determine
the expansion coefficientsλk, and this system becomes markedly more ill-conditioned asβ increases,
in spite of the enhanced locality. That is, there is a trade-off between locality and conditioning. In this
regard,β = 1

2 is a good compromise, consistent with the reputation of the MQ RBF as being particularly
useful.

8 9



10 of 25 B. FORNBERG, N. FLYER, S. HOVDE, and C. PIRET

0.01
0.11

2
5

10
20

0

10

20

(5

0

5

10

ik

lo
g

1
0
 |
p k

|

(a)

0.01
0.11

2
5

10
20

0

10

20

(5

0

5

10

ik

lo
g

1
0
 |
p k

|

(b)

0.01
0.11

2
5

10
20

0

10

20

(5

0

5

10

ik

lo
g

1
0
 |
p k

|

(c)

0.01
0.11

2
5

10
20

0

10

20

(5

0

5

10

ik

lo
g

1
0
 |
p k

|

(d)

FIG. 4. Comparison of approximate and actual surfaces illustrating the decay of IQ expansion coefficients for 1-D equispaced,
cardinal data. (a), the exponential decay (first term of (3.3)). (b), the algebraic decay (second term of (3.3)). (c), combination of
(a) and (b). (d), actual expansion coefficients, computed explicitly. Note how well (c) approximates (d).
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3.4 GA and SH

In these cases, there are no branch cuts, and both the locations and residues of the poles ofh(ξ ) can be
written down explicitly. The first pole provides the leading asymptotic term. The steps in arriving at
(2.11) and (2.12) include moving the integration path increasingly high up in the complex plane. In the
case of (2.11), the result can be further simplified by means of the relation

ξ (x) =
1

x3/2
ξ (

1
x
). (3.4)

for the function

ξ (x) =
∞

∑
j=0

(−1) j( j + 1
2) e−π( j+ 1

2)2x. (3.5)

3.5 BSL

The oscillatory Bessel RBF,φ(r) = Jd
2−1(εr)/(εr)

d
2−1, gives non-singular interpolants ifd > n,

whered is an integer andn is the dimension of the space Fornberg et al. (2006). These are included
in this study mainly to illustrate the unusual locality properties of their expansion coefficientsλk. The
BSL RBFs are different from other RBFs in that their Fourier transforms have compact support, being
non-zero only on the interval[−ε,ε] in 1-D (see Flyer (2006)). This implies that forε < π, the Poisson
sumΞ(ξ ) in equation (2.2) will be zero over a portion of the interval[−π,π], resulting in a divergent
integral forλk in (2.3). In such a case the coefficientsλk become extremely large and essentially lack
locality (as seen in the top left diagram of Figure 6).

On the other hand, ifε > π the Poisson sum (2.2) is everywhere positive. Equation (2.3) applies
and the coefficientsλk exhibit locality. For these values ofε, Ξ(ξ ) (and therefore 1/Ξ(ξ )) will always
have two discontinuities in some derivative on the interval[−π,π] due to the character of the Fourier
transform and the 2π periodicity of the Poisson sum. This will lead to an algebraic decay rate forλk of
the typeO(1/k(d−1)/2). The preceding schematic discussion is illustrated in Figure 6.

4. Summary of asymptotic observations in 1-D

The general picture that has emerged is that, for the main types of radial functions considered here, there
is always an exponential decay for the leading coefficients. In the RBF cases for whichh(ξ ) has branch
points atξ = 0 andξ = 2π (which also includes TPS), there will also be algebraic terms, which then
will come to dominate for high values ofk. Table 2 summarizes the different rates that arise for the
types of radial functions introduced in Table 1.

The algebraic trend, if present at all, is noticeable only after the coefficients have decreased by sev-
eral orders of magnitude. Furthermore, for decreasingε, it gets progressively more insignificant in view
of the rapid growth of the coefficient for the leading exponential term. From a computational point of
view, the rapid growth of all the coefficients poses less of a problem than one might fear. Because of the
nature of floating point arithmetic, uniform scalings will not generally lead to any loss of computational
accuracy. The exponential rate for MN and TPS becomes less favorable whenj increases. This forces
for these radial functions a trade-off with accuracy, which generally gets better with increasingj.

The cases whenφ(r) is an entire function (GA and BSL) become particularly bad whenε → 0. For
GA, the decay is of the formO(e−ε2k) as opposed toO(e−const· εk), and it is essentially lost altogether
for BSL whenε < π.
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Type of radial function Exponential rate Algebraic rate
Piecewise smooth
MN j = 1 (−1)k 5.20e−1.32k N/A

j = 2 (−1)k+11.38e−0.843k N/A

j = 3 (−1)k 0.224e−0.625k N/A

j = 4 (−1)k+10.0235e−0.498k N/A

TPS j = 1 (−1)k 5.30e−1.81k 3
π2k4

j = 2 (−1)k+11.81e−1.02k 5
π2k6

j = 3 (−1)k 0.377e−0.717k 7
π2k8

j = 4 (−1)k+10.0486e−0.554k 9
π2k10

Infinitely smooth
MQ ε = 1 (−1)k+117.3e−1.04k − 3

k5

ε = 1
10 (−1)k+11.46×1013e−0.150k −3000

k5

ε → 0 (−1)k+1 π
√

ε

23/2 e
π
ε e−

π
2 εk − 3

ε3k5

IQ ε = 1 (−1)k+13.68e−1.57k − 1
π2k2

ε → 0 (−1)k+1 ε2

2π e
π
ε e−

π
2 εk − 1

π2k2

IMQ ε = 1 (−1)k+17.82e−1.38k −0.922
4k(logk)2+0.927k logk+9.92k

GA ε2k >> 1 (−1)k ε3

π3/2 e
π2

4ε2 e−ε2k N/A

SH εk >> 1 (−1)k ε2

2π e
π2
2ε e− εk N/A

Table 2. Leading order exponential and algebraic cardinal coefficient decay rates in 1-D for some different radial functions
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5. Analysis and observations in 2-D and higher

In the case of GA, we can again find a closed form solution for the cardinal expansion coefficients in
any number of dimensions. For the other RBFs, we limit ourselves to 2-D and relate the numerically
observed decay rates to characteristics of the 2-D Fourier transform.

5.1 GA

With λk chosen according to (2.11), it holds that

∞

∑
k=−∞

λke
−ε2(k−m)2

=

{
1, if m= 0;

0, if m= 1.

Therefore, inn dimensions,

∞

∑
k1=∞

. . .
∞

∑
kn=−∞

(λk1· . . . ·λkn)e
−ε2[(k1−m1)2+...+(kn−mn)2]

=

(
∞

∑
k1=−∞

λk1e−ε2(k1−m1)2

)
· . . . ·

(
∞

∑
kn=−∞

λkne−ε2(kn−mn)2

)

=

{
1, if m1 = m2 = · · · = mn = 0;

0, otherwise,

and we have obtainedλk1,k2,...,kn = λk1 ·λk2 · . . . ·λkn. This is an exact formula for the RBF coefficients
in n-D. Notice that they are simply a product of the 1-D coefficients along each of then dimensions,
immediately confirming the pyramid shaped angular dependence seen later on in the GA case of Figure
10. The lack of a simple generalization of Cauchy’s Theorem to functions of several complex variables
makes the type of analysis we used in 1-D difficult to carry over. However, numerical computation
of the cardinal coefficients is again straightforward (noting that the integrals in (2.5) can be rapidly
approximated by FFTs).

We will return to the GA RBF in Section 5.3.

5.2 Cubic RBF

Figure 7 shows numerically computed values for log|λk1,k2| near the origin in thek1,k2-plane.
The coefficients decay exponentially fast for smallk, with different rates depending on the direction in
thek1,k2-plane, as shown in Figure 8.

Each of the subplots in Figure 8 is similar to the 1-D case in the left subplot of Figure 3 in that there
are two decay regimes. While we have not been able to find any closed form analytic expressions for
the direction dependent exponential decay regime, the algebraic decay regime that dominates for large
k, is shown below to be

λk1,k2 ≈ −
(

5
2π

)2 1
k7 (5.1)
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k1

k2

log |pk1,k2
|

FIG. 7. Display of log|λk1,k2 | for cubic RBFs in 2-D centered at(k1,k2) = (0,0).

wherek =
√

k2
1 +k2

2. Figure 9 shows the six subplots from Figure 8 superposed on each other, together
with (dashed) the curve corresponding to (5.1). The agreement is excellent. A different method of arriv-
ing at the algebraic decay rates (by repeated integration-by-parts) is given in Section 4.2.4 of Buhmann
(2003).

5.2.1 Proof of (5.1) The generalized 2-D Fourier transform for cubics isφ̂(ρ) = 9
ρ5 (cf. Table 1).

The denominatorg(ξ1,ξ2) = ∑∞
j1=−∞ ∑∞

j2=−∞ φ̂(‖ξ +2π j‖) in (2.5) will therefore go to infinity in this

manner at the origin and at each 2π-periodic repetition of the origin. The functionh(ξ1,ξ2) = 1
g(ξ1,ξ2)

will, at the origin (and at its periodic repetitions), take the form

h(ξ1,ξ2) =
1
9
(ξ 2

1 +ξ 2
2 )5/2 + {a smooth function}. (5.2)

We note that the cardinal expansion coefficients are proportional to the Fourier series coefficients of
the doubly 2π-periodic functionh(ξ1,ξ2). To see what effect these irregularities have on the coefficient
decay rate, we consider also:

Poisson’s summation formula in 2-D:If a function f (ξ1,ξ2) has the Fourier transform̂f (ω1,ω2), then
the doubly periodic function

∞

∑
j1=−∞

∞

∑
j2=−∞

f (ξ1 +2π j1,ξ2 +2π j2)

has the Fourier series
1

2π

∞

∑
k1=−∞

∞

∑
k2=−∞

f̂ (k1,k2) ei(k1ξ1+k2ξ2).
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FIG. 9. Decay rates of|λk1,k2 | in different directions in thek1,k2-plane, with the result from (5.1) superimposed as a dashed curve.

To use this result effectively, we first apply the Laplacian operator∆ = ∂ 2

∂ξ 2
1

+ ∂ 2

∂ξ 2
2

several times (e.g.

four times; the exact number does not influence the result) toh(ξ1,ξ2), leading to a function which is
dominated by the singularities:

∆ 4h(ξ1,ξ2) = 25(ξ 2
1 +ξ 2

2 )−3/2 + {a smooth function}.

Its Fourier transform at the integer lattice points,−25(k2
1 +k2

2)
1/2, should equal the Fourier coefficients

of the functionh(ξ1,ξ2), with the Laplacian applied four times, i.e.(k2
1 +k2

2)
4λk1,k2. This gives (5.1).

5.3 TPS, GA, AND SH

In contrast with the situation for the cubic RBF (Section 5.2.1), the functionsg(ξ1,ξ2) for the TPS,
GA, and SH RBFs are infinitely smooth at the origin and at their 2π-periodic repetitions (cf. Table 1).
Therefore the decay of the coefficients never becomes algebraic, as can be seen in Figure 10. It should
be noted that the type of angular symmetry observed in the GA case is directly due to the grid layout,
e.g. a rectalinear (Cartesian) grid layout produces four fold symmetry, a hexagonal grid layout will
produce six fold symmetry.

5.4 MQ, IMQ, and IQ

The situation in these cases is analogous to that of the cubic RBF since the 2-D generalized Fourier
transforms of these RBFs each go to infinity as the origin(ρ = 0), but do this in such a way that their
inverses are non-smooth acrossρ = 0 (cf. Table 1). That is, we expect the decay of the coefficients to
become algebraic after an initial exponential decay regime. Figure 10 shows that this is indeed the case.
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Following a procedure similar to that described in Section 5.2.1, it has been found that the algebraic

decay for MQ goes to leading order as
(

3
2π

)2 1
k5 , and for IMQ as

(
1

2π

)2 1
k3 . The decay for IQ is more

complicated, involving logarithmic components.

6. Summary of observations for RBF cardinal coefficient decay

Previous literature on the topic has left many questions unanswered: To what extent are the RBF cardi-
nal coefficients,λk, localized? If there is a localization attribute to the coefficients, what is the behavior

of the coefficients as|k|=
√

k2
1 +k2

2 increases from small to large? What happens in higher dimensions?

Is the decay rate ofλk only dependent on radial distances or do angular dependencies come in? In this
study, we have addressed these and other questions through both analytical (primarily contour integra-
tion in the complex plane) and numerical techniques. In addition, we have also introduced a seldom (if
ever) used radial function sech(εr), giving a proof of the non-singularity of its interpolation matrix in
n dimensions for scattered data. The observations that have emerged for the RBFs considered in this
paper are summarized below.

1. For all RBFs in 1-D and 2-D, except Bessel RBFs (for which the Poisson sum can be zero due to
the compactness of its Fourier transform), the leading order behavior of the expansion coefficients
for small|k| is exponential decay.

2. However, the leading order behavior of the coefficients can change from exponential decay (as
noted in (1)) to algebraic decay as|k| increases, exhibiting two different decay regimes in this
limit. In particular, this will occur when 1/φ̂(ρ) is non-smooth across the origin. Such cases
include MN in even dimensions, TPS in odd dimensions, MQ, IMQ, and IQ.

3. For those RBFs that do exhibit two different decay regimes for increasingk and do not grow
rapidly far out, which would exclude TPS, the exponential decay behavior of the coefficients for
smallk determines the localization property of the RBF interpolant. When the leading order be-
havior becomes algebraically decaying,λk has typically decreased by many orders of magnitude
(e.g. for MQ in 1-D, withε = 1, λk ≈ O(10−6), contributing less than 1% to the value of the
interpolant at the cardinal point.

4. For 2-D, in the regime of exponential decay, (i.e. for small|k|, |k| =
√

k2
1 +k2

2), the behavior of
the coefficients always has an angular dependence in thek1, k2 plane. If algebraic decay comes
to dominate the leading order behavior ask increases, the dependence will then become purely
radial.

It may also be convenient to have available some heuristic guidelines with regard to RBFs in general
that allow for quick assessment of the cardinal coefficient decay rate. Hence, we note the following in
1-D:

1. If φ(r) decays exponentially fast to zero for increasingr (e.g. GA and SH),̂φ(ξ ) will be analytic
in a strip around theξ -axis, implying that the decay ofλk will be of exponential form for allk
(i.e. will not be overtaken by any slower algebraic rate for largek).

9 9
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FIG. 10. Decay of expansion coefficients for 2D cardinal data for the TPS, MQ, GA, IMQ, SH, and IQ RBFs displayed in the
same log-linear format used in Figure 7. Note that the TPS, GA, and SH RBFs manifest an exponential decay regime only.
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2. If φ(r) is of the formφ(r) = |r|2 j+1, j = 0,1, . . . (MN, or a linear combination of such), the decay
will again be purely exponential.

3. If φ(r) is analytic and grows for increasingr like |r|α (e.g. GMQ), there will be an algebraic
decay rate present, which is particularly small wheneverα is an odd positive integer (e.g. MQ).

4. If φ(r) is analytic in a finite width strip|Im r| 6 a(ε) around the real axis, the exponential part of

the decay will typically (e.g. GMQ, SH) be of the formO
(

e−kπ/(2a(ε))
)

whenε → 0.
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A. Non-singularity of the RBF interpolant (in n dimensions, scattered data) in the SH case (φ(r) =
sech(εr))

By the Schoenberg interpolation theorem (Cheney & Light (2000), p. 101), the result follows if we can
show that sech(

√
x) is a completely monotone function. By the Bernstein-Widder theorem (Cheney &

Light (2000), p. 95) this will be the case if and only if the inverse Laplace transformγ(s) of sech(
√

x) is
non-negative for 0< s< ∞. From the expansion sech(

√
x) = 2(e−

√
x−e−3

√
x +e−5

√
x−+ . . .) follows

γ(s) =
1√

πs3/2

(
e−

1
4s −3e−

9
4s +5e−

25
4s −7e−

49
4s +− . . .

)
.

This can be written asγ(s) = 1√
πs3/2 ξ ( 1

4πs) using theξ -function defined in (3.5) It remains only to show

thatξ (s) > 0 for 0< s< ∞. This result is trivial fors> 1 (since the positive terms in (3.5) forj = 0 and
j = −1 then dominate all remaining terms), and it then holds also for 0< s6 1 because of (3.4).

B. Asymptotic analysis for GMQ in 1-D

The generalized multiquadric RBF has the formφ(r;β ,ε) = (1+ ε2r2)β . Its Fourier transform is given
by

φ̂(ρ;β ,ε) =
2β+1

Γ (−β )ε

(
Kβ+1/2(

|ρ|
ε )

( |ρ|ε )β+ 1
2

)
.

Note thatφ̂ for nonnegative integer values ofβ is singular, as also indicated by Figure 5. By equation
(2.3),

λk =
εΓ (−β )

2β+ 5
2 π

3
2

∫ 2π

0

eikξ dξ
∞
∑

j=−∞

Kβ+1/2(
|ξ+2π j|

ε )

(
|ξ+2π j|

ε )β+ 1
2

. (B.1)
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We find the analog of (3.1) to be

h(ξ ;β ,ε) =
1

∞
∑
j=0

Kβ+1/2( 2π j+ξ
ε )

( 2π j+ξ
ε )β+ 1

2
+

∞
∑
j=1

Kβ+1/2( 2π j−ξ
ε )

( 2π j−ξ
ε )β+ 1

2

.

B.1 Exponential decay

The poles ofh(ξ ;β ,ε) are located on the lineξ = π + it . On this line, the value ofh(ξ ;β ,ε) is purely
real. In order to find their contribution to the integral, it is necessary to find the locations of the poles as
well as the residues associated with them. Because we are looking for the leading terms, it is sufficient to
find the location of the first pole ofh(ξ ;β ,ε) only. We then look for the first zero ofg(ξ ;β ,ε) = 1

h(ξ ;β ,ε)

on ξ = π + it . Due to the rapid decay of theK Bessel function, it is sufficient to use only the center
term of the sum inh(ξ ;β ,ε). For small enoughε, the K Bessel function can be approximated by
formula 9.7.2 of Abramowitz & Stegun (1981). For|β | < 5

2 the first two terms are adequate:Kν(z) ≈√
π
2z e−z

(
1+ 4ν2−1

8z

)
. We get

g(π + it ;β ,ε) ≈
Kβ+1/2(

π+it
ε )

(π+it
ε )β+ 1

2

≈ e−
π+it

ε
√

π
2

(
π+it

ε

)−β
ε(2π +2it +β (1+β )ε)

2(π + it )2

The zero ofg(π + it ;β ,ε) can therefore be found by solving

(β +2) tan−1
( t

π

)
+

t
ε

+ tan−1
( −2t

2π +β (1+β )ε

)
=

π

2
+πσ ,

whereσ is an integer. Settingσ = 0 and approximating tan−1(z)≈ z, we gettpole≈ π

2
(

2+β
π + 1

ε − 2
2π+β (1+β )ε

) .

Therefore,λk, for relatively small values ofk, can be approximated as

λk ≈ ε Γ (−β )

2β+ 5
2 π

3
2

(2π i Res(h(z)eikz,z= π + itpole))

= (−1)k+1 ε Γ (−β )

2β+ 3
2
√

π

1
d
dt g(π + it ) t=tpole

e−ktpole. (B.2)

B.2 Algebraic decay

We again approximateh(ξ ;β ,ε) by means of just one term of the Poisson sum:

h(ξ ;β ,ε) ≈ f (ξ ;β ,ε) ≡

(
ξ
ε

)β+ 1
2

Kβ+ 1
2

(
ξ
ε

) (B.3)

B.2.1 Positiveβ

1 0 2



Localization properties of RBF expansion coefficients for cardinal interpolation 23 of 25

β A HALF -INTEGER Whenβ = µ +1/2, with µ a non-negative integer, the leading singularity looks

like
(−1)µ+1( ξ

ε )4µ+4 log( ξ
ε )

(µ!)2(µ+1)!23µ+1 . To compute the contribution of the branch point singularity to the integral

in (B.1), we start by noting thath(ξ ;β ,ε) is purely real along both of the straight lines Imξ = 0 and
Reξ = π. Then, by the Schwarz reflection principle, the contour integral, which should be taken along
sections{1} and{2} in Figure 2 (and also along a connection path high up), can just as well be taken
along sections{1} and{4}, leading to a simple treatment of the branch issue. We therefore get

λk ≈
εΓ (−µ −1/2)

(2π)3/22µ+3/2

(−1)µ+1iπ
(µ!)2(µ +1)!23µ+1

∫ i∞

0

(
ξ

ε

)4µ+4

eikξ dξ . (B.4)

Settingξ = it and integrating leads to

λk =
Γ (−β )(4β +2)!

24β+2
√

π
((

β − 1
2

)
!
)2(

β + 1
2

)
! ε4β+1

1

k4β+3
. (B.5)

β NOT A HALF-INTEGER In this case the branch point at the origin is algebraic (instead of logarith-
mic):

f (ξ ;β ,ε) ≈ ξ 1+2β cos(πβ )Γ (1
2 −β )

2β− 1
2 π ε2β+1

Computing the contour integral along sections{1} and{4} in Figure 2 leads to

λk ≈
(2β +1)cot(πβ )

2π ε2β

1

k2(β+1)
(B.6)

B.2.2 Negativeβ

β > −1 Referring to equation (B.3), we make the approximation that, for smallξ ,

K1
2+β

(
ξ

ε

)
≈−γ − log

(
ξ

2ε

)
.

This yields

f (ξ ;β ,ε) ≈− Γ (−β )ε
1
2−β ξ

1
2+β

2β+1
[
γ + log

(
ξ
2ε

)] .

Now the equivalent of equation (B.4) will contain logarithms. We make the change of variablesz= logξ
and then apply Laplace’s method for integrals with movable maxima as described in Ablowitz & Fokas
(2003) and Bender & Orszag (1999). The result is that

λk ≈−
(3+2β )ε

1
2−β Γ (−β )

[
π cos

(
π
4 (1+2β )

)
−2
(

γ + log
(

3+2β
4kε

))
sin
(

π
4 (1+2β )

)]

21+β e
3
2+β

(
3
2 +β

)−β
π
(

4γ2 +π2 +8γ log
(

3+2β
4kε

)
+4log2

(
3+2β
4kε

)) 1

k
3
2+β

.

(B.7)
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This approximation works well for values ofβ near−1
2. Degradation of the approximation near the

ends of the interval(−1,0) is due to the lack ofβ dependence in the approximation for the BesselK
function. Adding more terms to the BesselK approximation solves this problem at the cost of a much
more complicated expression forλk.

β = −1 In this case we have

φ̂(ρ;ε) =

√
π√
2ε

e−
|ρ|
ε

and

f (ξ ;ε) =

√
2ε√
π

e
ρ
ε .

Integrating as before yields

λk ≈− 1
π2k2 . (B.8)

Numerical tests have confirmed that the leading algebraic decay does not depend onε.

β < −1 We note now thatK−ν(z) = Kν(z). Then, whenβ < 0, it must be true thatKβ+1/2(z) =

K1/2+(−1−β )(z). Let β̂ = −1−β > −1. Then,

( ξ
ε )β+1/2

Kβ+1/2(
ξ
ε )

=

(
ξ

ε

)1+2β ( ξ
ε )β̂+1/2

K
β̂+1/2(

ξ
ε )

=

(
ξ

ε

)1+2β

f (ξ ; β̂ ,ε)

where f (ξ ; β̂ ,ε) is the approximation ofh(ξ ; β̂ ,ε), defined forβ̂ =−1−β >−1. Taking the two-term
approximation

f (ξ ; β̂ ,ε) ≈ cos(πβ )Γ (1
2 − β̂ )

23β̂+ 1
2 π Γ (3

2 + β̂ )

(
ξ

ε

)1+2β̂
((

ξ

ε

)1+2β̂

Γ (1
2 − β̂ )+21+2β̂ Γ (3

2 + β̂ )

)

and computing the contour integral as before gives

λk ≈
(cos(πβ )Γ (−β )Γ (3

2 +β ))2

π3 ε−2β−2

1

k−2β
. (B.9)
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A STABLE ALGORITHM FOR FLAT RADIAL BASIS FUNCTIONS

ON A SPHERE∗

BENGT FORNBERG† AND CÉCILE PIRET†

Abstract. When radial basis functions (RBFs) are made increasingly flat, the interpolation
error typically decreases steadily until some point when Runge-type oscillations either halt or reverse
this trend. Because the most obvious method to calculate an RBF interpolant becomes a numerically
unstable algorithm for a stable problem in the case of near-flat basis functions, there will typically
also be a separate point at which disastrous ill-conditioning enters. We introduce here a new method,
RBF-QR, which entirely eliminates such ill-conditioning, and we apply it in the special case when the
data points are distributed over the surface of a sphere. This algorithm works even for thousands of
node points, and it allows the RBF shape parameter to be optimized without the limitations imposed
by stability concerns. Since interpolation in the flat RBF limit on a sphere is found to coincide with
spherical harmonics interpolation, new insights are gained as to why the RBF approach (with nonflat
basis functions) often is the more accurate of the two methods.

Key words. radial basis functions, RBF, shape parameter, sphere, spherical harmonics

AMS subject classifications. 65D15, 65F22
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1. Introduction. Numerical computations in spherical geometries are ubiqui-
tous in many application areas, such as geophysics (including weather and climate
modeling), astrophysics, and quantum mechanics. The apparent simplicity of such
geometries can be very deceptive. The impossibility to place more than 20 nodes
in a completely uniform pattern on a spherical surface severely complicates most
high-order numerical methods, which usually rely on highly regular lattice-type node
layouts. Although double Fourier methods [12], [29], [30], [39], spherical harmon-
ics methods [2], [18], [40], [42], and spectral element methods [17], [41], [43] all can
achieve spectral accuracy (meaning that errors decay faster than algebraically with
an increasing number of node points), all of these approaches suffer from different
computational limitations, as noted in [7].

Radial basis functions (RBFs), when used as a basis for spectral methods in
general geometries or on curved surfaces, feature a striking algebraic simplicity. They
have recently been used very successfully by Flyer and Wright for purely convection-
type problems on a spherical surface [7], with an implementation for the shallow
water equations forthcoming [8]. However, challenges include numerical conditioning
and computational speed. The purpose of the present study is to introduce a new
computational algorithm, which successfully addresses the first of these two issues.
Our presentation of this RBF-QR algorithm does not imply that we always recommend
the use of very flat basis functions. It will depend entirely on the application whether
the best value of the shape parameter falls inside or outside the range that was already
previously available. What the RBF-QR algorithm achieves is that it makes also
the flat basis function range fully available for exploration (and, if appropriate, for
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exploitation). For the convection-type test problem just mentioned, this has already
been investigated [13].

The essential concept behind the RBF-QR algorithm is that a finite set of near-flat
RBFs, although forming a terrible base, nevertheless span an excellent approximation
space. The RBF-QR algorithm creates a completely different and very well condi-
tioned base within exactly this same space. Using instead this new base will thus lead
to identical results for interpolation, etc., apart from the fact that all ill-conditioning
now has been eliminated. In order to carry out this base change in a stable way, the
RBFs are first reexpressed as certain truncated infinite sums, after which it transpires
that the ill-conditioning can be eliminated analytically, before any actual numerics is
performed. The latter includes, among other steps, a QR factorization.

This paper starts with a very brief introduction to RBF interpolation, and we
then quote some relevant results from the literature, such as the potential significance
of the flat basis function limit. The subsequent sections include an introduction to the
RBF-QR method, a discussion of computational issues related to it, and numerical
test results. The ability to compute stably for all values of the shape parameter leads
to novel comparisons between RBFs and spherical harmonics (SPH) interpolations
(since the latter are found to arise in the limit of flat RBF). The main observations
are summarized in a concluding section.

2. RBF methodology. In order to explain and to motivate the RBF-QR algo-
rithm, we first give a brief introduction to RBFs and then note how they can be used
for solving PDEs.

2.1. The form of an RBF interpolant. In the case of interpolating data
values fi at scattered distinct node locations xi, i = 1, 2, . . . n, in d dimensions, the
basic RBF interpolant takes the form

(2.1) s(x) =

n
∑

i=1

λi φ(‖x− xi‖),

where || · || denotes the Euclidean norm. The expansion coefficients λi are determined
by the interpolation conditions s(xi) = fi; i.e., they can be obtained by solving a
linear system A λ = f. Written out in more detail:

(2.2)











φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xn‖)
φ(‖x2 − x1‖) φ(‖x2 − x2‖) · · · φ(‖x2 − xn‖)
...

...
...

φ(‖xn − x1‖) φ(‖xn − x2‖) · · · φ(‖xn − xn‖)





















λ1

λ2

...
λn











=











f1

f2

...
fn











.

In this study, we will limit our attention to the radial functions φ(r) listed in Table
2.1. The parameter ε is known as the shape parameter. As ε → 0, the basis functions
become increasingly flat.

On domains with boundaries, polynomial terms are sometimes added to (2.1),
together with some constraints on the coefficients [33]. On a spherical surface, the
most natural counterpart is to include some low-order SPH [20]. We will not explore
such variations here.

2.2. RBFs for interpolation and for solving PDEs. For about two decades
following the introduction of RBFs by Hardy in 1971 [19], they were mainly used for
multivariate data interpolation in a rapidly expanding range of applications. In 1990,
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Table 2.1

Definitions of some infinitely differentiable radial functions. The shape parameter ε controls
their �flatness.�

Name of RBF Abbreviation Definition

Multiquadric MQ
√

1 + (εr)2

Inverse multiquadric IMQ
1

√

1 + (εr)2

Inverse quadratic IQ
1

1 + (εr)2

Gaussian GA e−(εr)2

Kansa introduced a meshless collocation method to solve PDEs using RBF inter-
polants [21], [22]. In this method, a smooth RBF interpolant to the scattered data is
differentiated analytically in order to approximate partial derivatives. Kansa used this
approach to solve parabolic, elliptic, and viscously damped hyperbolic PDEs. This
approach is typically spectrally accurate (when boundary conditions are implemented
appropriately). Another notable advantage lies in the fact that it does not require any
kind of a mesh, as opposed to the case with most other types of PDE solvers, such as
finite difference, finite element, and finite volume methods. Creating a suitable mesh
over an irregular domain in several dimensions can be highly challenging.

The flat basis function limit ε → 0 would appear to be severely ill-conditioned,
since all of the basis functions then become constant, and thus linearly dependent.
The expansion coefficients λi will then diverge to plus or minus infinity, causing large
numbers of cancellations to arise both when solving (2.2) and when evaluating (2.1).
The first indication that the limit nevertheless could be of some interest arose in
connection with analysis of interpolants on infinite equispaced lattices, as summa-
rized in [3, Chapter 4]. However, especially after the apparent ill-conditioning was
expressed in 1993 as a fundamental �uncertainty principle� [37], the limit was not
considered seriously for numerical use for almost a decade. This started to change in
2002 when Driscoll and Fornberg [6] proved that, in this flat basis function limit, a
one-dimensional (1-D) RBF interpolant in general reduces to Lagrange�s interpolation
polynomial. For extensions of this result to more dimensions, see [26], [38]. Already
the 1-D result led to the realization that the complete task, going from data to in-
terpolant, is well-conditioned even though the separate steps of going from data to
RBF expansion coefficients and then from RBF expansion coefficients to interpolant
both can be ill-conditioned. Interpolation with near-flat RBFs has in much of the
RBF literature been mistaken as an ill-conditioned problem partly because the most
obvious numerical method then is unstable.

As noted further in [15], and used to great advantage for solving elliptic PDEs
in [24], the polynomial limit results imply that the RBF approach for PDEs can be
viewed as a generalization (to irregular domains and scattered nodes) of the pseu-
dospectral (PS) method [1], [10], [44].

Another apparent contradiction is the following: Why would we ever consider
nearly (or totally) flat basis functions when solving convective-type PDEs, for which
the solutions might not be smooth at all�maybe even discontinuous? The RBF-QR
algorithm shows that, as ε → 0, the flat basis functions span exactly the same space
as do the (distinctly nonflat, but still very smooth) SPH. We can then draw a parallel
to the very successful Fourier-PS methods which, for long-time integration, perform
excellently even in cases of nonsmooth solutions ([10, section 4.2]).
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Closed form expressions for RBF interpolation and differentiation errors in 1-D
periodic settings are given in [11]. The errors for smooth data are found to not only de-
crease exponentially fast with an increasing number of nodes but also decrease rapidly
in this ε → 0 limit (unless potentially adverse effects due to the Runge phenomenon
are present, as discussed in [16]). These observations all agree very well both with
theoretical analysis [27], [47] and with computational experience in multidimensional
settings with irregular node layouts [24].

The contour-Padé method [14], based on contour integration in a complex ε-plane,
confirmed that RBF interpolants s(x) can be computed in a stable way, using standard
precision arithmetic, even in the limit of ε → 0. Although this algorithm formed a
very successful tool for discovering and further exploring several key features of RBF
approximations [15], [24], [46], it was limited to a relatively low number of data points
(n � 200 in 2-D). This algorithm demonstrated explicitly that there is no fundamental
barrier against stable computation in the flat basis function limit. It thus confirmed
that use of (2.2) followed by (2.1) can be viewed merely as a potentially ill-conditioned
approach for computing something that is intrinsically well-conditioned.

Spherical geometries are of particular interest in many geophysical and astrophys-
ical applications. As noted in the introduction, Flyer and Wright [7] were the first
to use RBFs to solve purely convective (i.e., nondissipative) PDEs over a spherical
surface. Their implementation followed what we here denote by �RBF-Direct,� i.e.,
direct use of (2.2) followed by (2.1).

The comments above set the context which motivates the present work. We intro-
duce here a new computational algorithm RBF-QR, which, for RBF computations on
a sphere, eliminates the ill-conditioning of RBF-Direct for small values of ε (at least
for up to several thousands of points). However, it will still depend on the application
whether the low ε regime, now made computationally available, is advantageous or
not.

3. The RBF-QR method. Compared to the contour-Padé method, the RBF-
QR method is faster and algorithmically simpler and it can be used for much larger
numbers of points. Although we introduce it here only for the special case of nodes
located on the surface of a sphere, it is being developed also for general domains in a
parallel research effort [25]. In this present case with nodes on a sphere, we measure
all distances that appear in (2.1) and in (2.2) as is customary between points in a 3-D
space and not geodesically along great circle arcs.

3.1. The concept of an equivalent basis. The key idea behind the RBF-QR
method is to replace, in the case of small ε, the extremely ill-conditioned RBF basis
with a well-conditioned one that spans exactly the same space. It turns out to be
possible to do this in a way that does not at any stage involve numerical cancellations.
The concept of the base change is somewhat reminiscent of how {1, x, x2, . . . , xn}
forms a very ill-conditioned basis over [−1, 1], whereas the Chebyshev basis {T0(x),
T1(x), T2(x), . . . , Tn(x)} is much better conditioned. Since the spaces spanned by the
two bases are identical, the results of interpolation using the two bases will also be
identical, except for the fact that computations with the latter are vastly more stable
with respect to the influence of truncation and rounding errors.

In the present case of RBF-QR applied on the surface of a sphere, the new equiv-
alent bases that we introduce will be seen to converge to the spherical harmonics basis
as ε → 0. We therefore next give a brief introduction to spherical harmonics.
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Fig. 3.1. Spherical harmonics basis functions of the first five orders (cf. the functional forms
for the first three orders, given in Table 3.1). The shades of gray reflect numerical values; dashed
lines mark zero contours.

3.2. SPH. These functions are the counterparts on the surface of the unit sphere
S2 (defined by x2+y2+z2 = 1) to Fourier modes around the periphery of the unit circle
S1 (defined by x2 + y2 = 1). Although both of these function sets form orthonormal
bases, they differ significantly when used numerically, especially when it is needed
to switch between spectral coefficients and node values. A Fourier expansion with n

coefficients corresponds naturally to node values at n equispaced points. In numerical
SPH calculations, it is most common to use in physical space latitude-longitude�type
node sets involving about three times as many nodes as there are SPH coefficients
and then rely on least squares when transferring data from node values to coefficients.
Although no direct counterpart to the FFT algorithm is available, several relatively
fast algorithms for large numbers of modes have been proposed, e.g., [5], [31], [32], [34].

Closed form expressions for the SPH basis functions tend to be fairly complicated.
The definition that we adhere to here agrees for (x, y, z) ∈ S2 with
(3.1)

Y ν
µ (x, y, z) =







√

2µ+1
4π

√

(µ−ν)!
(µ+ν)!P

ν
µ (z) cos(ν tan−1( yx )), ν = 0, 1, . . . , µ,

√

2µ+1
4π

√

(µ+ν)!
(µ−ν)!P

−ν
µ (z) sin(−ν tan−1( yx )), ν = −µ, . . . ,−1.

Here P ν
µ (z) are the associated Legendre functions. The functions Y ν

µ (x) corresponding
to µ = 0, 1, . . . , 4 are illustrated in Figure 3.1.

As indicated in Table 3.1, the SPH can alternatively be viewed as simple polyno-
mials restricted to (x, y, z) ∈ S2. For each value of µ, the µ2 SPH of that and lower
orders span the space of all independent polynomials in (x, y, z) of degree µ (after the
dependence x2 + y2 + z2 = 1 has been accounted for).
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Table 3.1

SPH basis functions of the first few orders, expressed as low degree polynomials in x, y, z, which
are then evaluated over the unit sphere (x, y, z) ∈ S2, i.e., x2 + y2 + z2 = 1.

Y ν
µ (x) ν = −2 ν = −1 ν = 0 ν = 1 ν = 2

µ = 0 1
2
√

π

µ = 1 - 1
2

√

3
2π

y 1
2

√

3
π
z - 1

2

√

3
2π

x

µ = 2 1
2

√

15
2π

xy - 1
2

√

15
2π

zy 1
4

√

5
π

(3z2 − 1) - 1
2

√

15
2π

zx 1
4

√

15
2π

(x2 − y2)

Table 3.2

SPH expansion coefficients corresponding to different choices of smooth RBFs.

Radial function Expansion coefficients cµ,ε

MQ
−2π(2ε2+1+(µ+1/2)

√
1+4ε2)

(µ+3/2)(µ+1/2)(µ−1/2)

(

2

1+
√

4ε2+1

)2µ+1

IMQ 4π
(µ+1/2)

(

2

1+
√

4ε2+1

)2µ+1

IQ 4 π3/2µ!

Γ(µ+ 3
2
)(1+4ε2)µ+1 2F1(µ + 1, µ + 1; 2µ + 2; 4ε2

1+4ε2
)

GA 4π3/2

ε2µ+1 e
−2ε2Iµ+1/2(2ε2)

A SPH expansion of a function defined over the unit sphere takes the form

(3.2) s(x, y, z) =

∞
∑

µ=0

µ
∑

ν=−µ

cµ,ν Y ν
µ (x, y, z).

Truncated SPH expansions (µ ≤ µmax) feature a completely uniform resolution over
the surface of the sphere. As was noted in the introduction, truncated SPH expansions
provide one of the main approaches for reaching spectral accuracy when numerically
solving PDEs on a sphere [2], [18], [40], [42]; see especially [7] for a comparison between
this and other methodologies (including RBFs).

3.3. Expansion formulas for RBFs in terms of SPH. We next quote some
formulas that can be used to transform a basis made up of RBFs to one based on
SPH. Hubbert and Baxter [20] give expressions for the coefficients cµ,ε in expansions
of the form

(3.3) φ(‖x− xi‖) =

∞
∑

µ=0

µ
∑

ν=−µ

′

{cµ,ε ε
2µ Y ν

µ (xi)} Y ν
µ (x),

where the symbol
∑′

implies halving the ν = 0 term of the sum. The results for the
radial functions in Table 2.1 are shown in Table 3.2 (including IQ, not given in [20]).
A key feature of these formulas is that, even for vanishingly small ε, all coefficients can
be calculated without any loss of significant digits caused by numerical cancellations.
Below are some notes on these expansions:

• In the formula for IQ, 2F1(. . . ) denotes the (Gauss) hypergeometric function.
• In the formula for GA, Iµ+1/2 denotes a Bessel function of the second kind.

It follows from the identity
Iµ+1/2(2ε

2)

ε2µ+1 = 1
Γ(µ+1)

√
π

∫ 1

−1
e2ε2t(1 − t2)kdt that

the apparent singularity of cµ,ε at ε = 0 is a removable one.
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Table 3.3

Expansion coefficients for two cases of piecewise smooth radial functions.

Radial function Definition Expansion coefficients cµ

Cubic |r|3 36π
(µ+ 5

2
)(µ+ 3

2
)(µ+ 1

2
)(µ− 1

2
)(µ− 3

2
)

Thin plate splines (TPS) r2 log |r| 16π
(µ+2)(µ+1)µ(µ−1)

• In practice, we truncate the infinite outer sum in (3.3) after a finite number
of terms. This process is explained in more detail in section 3.5.2.

• The shape parameter ε appears in (3.3) both in the factors ε2µ and also inside
the expansion coefficients cµ,ε. Because the matrix algebra in the RBF-QR
algorithm requires numerical values of cµ,ε, we need to give a numerical value
to ε at the beginning of our algorithm. However, to eliminate any danger of
numerical underflow, we wait until the very end to introduce the ε2µ factors
seen in (3.3) (at which point they can be factored out and discarded).

• Expansions are possible also for piecewise smooth RBFs. The expansions
then take the form

φ(‖x− xi‖) =

∞
∑

µ=0

µ
∑

ν=−µ

′

{cµ Y ν
µ (xi)} Y ν

µ (x),

with some examples of expansion coefficients given in Table 3.3. Since such
RBFs do not give spectral accuracy, and also have no ε dependence (and
therefore no flat limit), these cases are of less interest in the present context.

3.4. Matrix representation and QR factorization.

3.4.1. Change of basis. Following (3.3), we rewrite the original ill-conditioned
basis as expansions in terms of successive SPH as
(3.4)














































































































φ(‖x− x1‖) =
c0,ε
2 Y 0

0 (x1)Y
0
0 (x)

+ε2c1,ε{Y
−1
1 (x1)Y

−1
1 (x) + 1

2Y
0
1 (x1)Y

0
1 (x) + Y 1

1 (x1)Y
1
1 (x)}

+ε4c2,ε{......} + ε6c3,ε{.........} + ε8c4,ε{............} + · · · ,

φ(‖x− x2‖) =
c0,ε
2 Y 0

0 (x2)Y
0
0 (x)

+ε2c1,ε{Y
−1
1 (x2)Y

−1
1 (x) + 1

2Y
0
1 (x2)Y

0
1 (x) + Y 1

1 (x2)Y
1
1 (x)}

+ε4c2,ε{......} + ε6c3,ε{.........} + ε8c4,ε{............} + · · · ,
...

...

φ(‖x− xn‖) =
c0,ε
2 Y 0

0 (xn)Y 0
0 (x)

+ε2c1,ε{Y
−1
1 (xn)Y −1

1 (x) + 1
2Y

0
1 (xn)Y 0

1 (x) + Y 1
1 (xn)Y 1

1 (x)}

+ε4c2,ε{......} + ε6c3,ε{.........} + ε8c4,ε{............} + · · · .
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This can be rewritten in matrix×vector form as follows:













φ(‖x− x1‖)

φ(‖x− x2‖)
...

φ(‖x− xn‖)













=















c0,ε
2 Y 0

0 (x1)
ε2c1,ε

1 Y −1
1 (x1)

ε2c1,ε
2 Y 0

1 (x1)
ε2c1,ε

1 Y 1
1 (x1) · · ·

c0,ε
2 Y 0

0 (x2)
ε2c1,ε

1 Y −1
1 (x2)

ε2c1,ε
2 Y 0

1 (x2)
ε2c1,ε

1 Y 1
1 (x2) · · ·

· · · · · · · · · · · · · · ·

c0,ε
2 Y 0

0 (xn)
ε2c1,ε

1 Y −1
1 (xn)

ε2c1,ε
2 Y 0

1 (xn)
ε2c1,ε

1 Y 1
1 (xn) · · ·

























































Y 0
0 (x)

Y −1
1 (x)

Y 0
1 (x)

Y 1
1 (x)

Y −2
2 (x)

Y −1
2 (x)

Y 0
2 (x)

Y 1
2 (x)

Y 2
2 (x)
...











































(3.5)

= B · Y (x).

The key observation in what follows is that, if we multiply both sides of (3.5)
with any nonsingular matrix from the left, the effect will be that we have formed new
linear combinations of existing basis functions; i.e., the space that the functions span
has not changed.

A QR factorization of B creates in the upper triangular matrix new linear com-
binations of the rows of B. In this process, elements in different columns are never
combined with each other. Powers of ε will appear in the same pattern in the result-
ing upper triangular matrix as they did in the B-matrix, and no mixing of large and
small elements will occur, no matter the value of ε. We thus factor B into a product
B = Q · E · R, where Q is unitary, E is diagonal, and R is upper triangular. From
the observations above, B · Y (x) and R · Y (x) will then span the same space. We
will do this factorization in such a way that the ill-conditioning issue becomes entirely
confined to the E-matrix and thus has disappeared from the numerical problem when
using R · Y (x) in place of the original basis B · Y (x). The essential point that makes
the RBF-QR algorithm work is that the ill-conditioning of the original base given in
the left-hand side of (3.5) and (3.6) has become entirely confined to the E-matrix.
This matrix both enters and disappears from the calculation analytically ; i.e., it never
enters into the numerical calculation of the R · Y (x).

Written in equation form:





















φ(‖x− x1‖)

φ(‖x− x2‖)

φ(‖x− x3‖)

φ(‖x− x4‖)
...

φ(‖x− xn‖)





















=

















Q



































1
ε2

ε2

ε2

ε4

. . .
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×























∗ . . . . . . . . . . . .

∗ ∗ ∗ . . . . . . . . .

∗ ∗ . . . . . . . . .

∗ . . . . . . . . .

∗ ∗ ∗ ∗ ∗ . . . .

∗ ∗ ∗ ∗ . . . .
. . . . . . . . . . . . .

























































Y 0
0 (x)

Y −1
1 (x)

Y 0
1 (x)

Y 1
1 (x)

Y −2
2 (x)

Y −1
2 (x)

Y 0
2 (x)

Y 1
2 (x)

Y 2
2 (x)

...



































(3.6)

= (Q · E ·R) · Y (x),

where Q is a unitary n× n matrix, E is a n× n diagonal matrix, and R is an upper
triangular n ×m matrix (where the value for m will be discussed shortly in section
3.5.2). The entries marked as �∗� in the matrix R are of size ε0. These appear only in
upper triangular square blocks along the main diagonal, of sizes 1×1, 3×3, 5×5, etc.
All of the other nonzero entries of R, marked as �·�, contain a higher-order leading
power of the form ε2k, k = 1, 2, . . . ; i.e., they vanish in significance when ε → 0. As
noted already, the entries in the matrix×vector product R · Y (x) form a basis which
spans exactly the same space as the original (as ε → 0, extremely ill-conditioned)
RBF basis.

Another way to arrive at the same R · Y (x) representation is described next.
Noting the structure of B from (3.5), we can factor it

B =





Y 0
0 (x1) Y −1

1 (x1) · · ·
Y 0

0 (x2) Y −1
1 (x2) · · ·

· · · · · · · · ·











ε0

ε2

. . .













c0,ε
2

c1,ε
. . .






.

After QR decomposing the first factor





Y 0
0 (x1) Y −1

1 (x1) · · ·
Y 0

0 (x2) Y −1
1 (x2) · · ·

· · · · · · · · ·



 =



 Q











r11 r12 · · ·
r22 · · ·

. . .






,

we have



 B



 =



 Q











r11 r12 · · ·
r22 · · ·

. . .













ε0

ε2

. . .













c0,ε
2

c1,ε
. . .






.

Transferring the diagonal matrix with powers of ε from the right-hand side to the left-
hand side of the upper triangular matrix gives exactly the same result as shown in
(3.6). An advantage of this second description (followed in the code in the appendix)
is that it more clearly conveys that the QR decomposition can be carried out in a way
that is completely independent of the choice of RBF (and of the value of ε).

In the computational algorithm, we make a minor additional base modification.
The matrix R can be represented as [R1|R2], where R1 is a square upper triangular
matrix. Therefore, assuming that the diagonal entries in R are nonzero, we can further
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factor R = R1[ I |(R1)
−1R2]. This produces the new basis [ I |(R1)

−1R2] · Y, which
we will be using:
(3.7)

[ I |(R1)
−1R2]·Y =







































1 . . . .

1 . . . .

1 . . . .

1 . . . .

1 . . . .

1 . . . .

1 . . . .

1 . . . .

1 . . . .

1 . . . .
. . . . . . .















































































Y 0
0 (x)

Y −1
1 (x)

Y 0
1 (x)

Y 1
1 (x)

Y −2
2 (x)

Y −1
2 (x)

Y 0
2 (x)

Y 1
2 (x)

Y 2
2 (x)

...

...









































.

Each new basis function is now a SPH, with a perturbation. These perturbations
fade away as ε → 0 because all of the entries denoted with �·� are of size O(ε2) or
smaller. With the previous assumption that the diagonal entries of R are nonzero,
this shows that, as ε → 0, the terms of the new basis converge to the successive
SPH. If the number of nodes (i.e., the number of rows and columns in the collocation
matrix A) is a perfect square n = µ2

0, then the RBF interpolants converge to a
unique SPH expansion (3.2) with µ < µ0. The computational procedure of using the
new (but mathematically equivalent) basis remains stable as ε → 0 on the further
assumption that the nodes are distributed in such a way that SPH interpolation is
nonsingular. Although this is very likely in any practical case, it follows from a simple
argument that no node-independent basis functions can exist in more than 1-D such
that nonsingularity is assured for all distinct node locations [28].

3.5. Computational considerations. In this section, we discuss the two issues
of code complexity and the truncation strategy for the infinite expansions in (3.7).

3.5.1. Code complexity. A Matlab code for the RBF-QR algorithm is pre-
sented in the appendix. The cost is dominated by the QR factorization, and it will
therefore have an O(n3) operation count, just as the RBF-Direct method (for which
the work is dominated by one matrix inversion). Figure 3.2 displays the computa-
tional times of both methods versus the number of nodes n. The trends appear as
slightly more favorable than O(n3), since Matlab�s data handling becomes more effi-
cient as matrices become larger. The figure also shows that the computational time
diminishes with ε. This is due to the fact that a smaller ε allows for earlier truncation
in the expansions (3.4) and fewer columns need to be retained, at first in R and then
in R−1

1 R2. This truncation procedure is described in more detail below.

3.5.2. Truncation. The matrix B in (3.5) features from the left 1 column with
elements of size O(ε0), 3 columns of size O(ε2), 5 columns of size O(ε4), etc., corre-
sponding to µ = 0, 1, 2, . . . , respectively, in (3.3). With n data points, the matrix B

will have n rows. We construct this matrix B as {B0, B1, B2, . . . } where the matrix
block Bµ is of size n × (2µ + 1). To ensure that all of the new basis functions are
obtained to machine precision (16 significant digits), we include enough blocks that
the max norm of the last included one is less than 10−16 of the max norm of the block
that contains the nth column of B.
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Fig. 3.2. Plot of the computational time for the RBF-QR method versus the number of nodes
for ε = 0.5, 0.1, and 0.001. These are compared against the times for RBF-Direct and with a line
showing the slope corresponding to O(n3). The times are given for a Matlab implementation running
under Windows on a 1.86 GHz PC.

4. Numerical tests for interpolation on a sphere. We initially consider
two different node distributions, both containing n = 1849 nodes: (a) near-uniform
distribution, obtained as the solution to a minimum energy problem�as would arise
from the equilibrium of freely moving and mutually repelling equal electric charges
[45] and (b) uniformly random distribution, as generated, for example, by the Matlab
statements

n = 1849

z = 2*rand(1,n)-1;

r = sqrt(1-z.^2);

theta = 2*pi*rand(1,n);

x = r.*cos(theta);

y = r.*sin(theta);

(the number n = 1849 = 432 gives the same number of nodes as there are coefficients
in a SPH expansion that is truncated to µ ≤ 42, as commonly used in SPH tests, and
then denoted �T42� [41]). The two types of node distributions are shown in Figure
4.1. We consider the following two test functions:

(4.1)
Gaussian bell: g(x, y, z) = e−( 2.25

R arccos x)2 ,

Cosine bell: c(x, y, z) =

{

1
2 (1 + cos( π

R arccosx)) x > cosR,

0 x ≤ cosR,

of smoothness C∞ and C1, respectively. R is here a parameter which controls how
peaked the bells are, going from spikelike at R = 0 to flat for increasing R. The cosine
bell features a jump in the second derivative at the edge of its region of support. An
equivalent way to describe the two bells is to replace arccos x by ω, where ω is the
angle, as seen from the center of the sphere, between a point on the sphere and the
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b. Random node distributiona. Near uniform node distribution

Fig. 4.1. Different point distributions for n = 1849 node points on the unit sphere S2.

Fig. 4.2. Three illustrations of the Gaussian bell (a) as a function of x, according to (4.1), (b)
gray scale on a sphere surface, viewed from the positive x-direction, and (c) unrolled on a spherical
coordinate ϕ, θ-plane (with the n = 1849 near-uniform node locations also marked).

center of the respective bell. The support of the cosine bell is then given by ω < R.
Figures 4.2 and 4.3 show each of these two test functions in three different ways. In
parts (c) of these figures, as well as in the rest of this paper, we adhere to the standard
definition of spherical coordinates







x = ρ sinϕ cos θ,
y = ρ sinϕ sin θ,

z = ρ cosϕ

and restrict this to ρ = 1 for the unit sphere. The angle ϕ is the colatitude and is
measured from the z-axis.
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Fig. 4.3. Cosine bell, displayed in the same manner as the Gaussian bell in Figure 4.2.

The test functions are sampled over the two node sets, and the max norm errors
of the MQ RBF interpolants are then evaluated (by dense sampling over the sphere)
for different values of ε, using both RBF-Direct (based on (2.2) and (2.1)) and the
new RBF-QR method.

4.1. Results for the Gaussian bell. Figure 4.4 shows the interpolation errors
as functions of ε. Near-uniform node distributions are seen to give 2�3 orders of mag-
nitude higher accuracy than random node distributions. Even with ill-conditioning
issues eliminated, it is still detrimental to the overall accuracy that some small areas,
purely by chance, have become much less resolved than others. We will thus not
consider the random node case any further in this study.

When ε is decreased, RBF-Direct fails around ε = 1, whereas the RBF-QR
method can be used for the remaining interval 0 ≤ ε ≤ 1. The rapid improvement in
accuracy as ε is lowered from 102 to 100 is similar to what is described analytically
(in a simplified setting) in [11]. This improvement trend ceases around ε = 1. In the
case of the wide bell (R = 0.6), this is due to the limited precision available in 64-bit
floating point. In the case of the narrower bell (R = 0.4), the machine rounding level
is not reached. The errors increase slightly as ε approaches the SPH case of ε = 0.
Figure 4.5 displays in more detail how the interpolation error over the sphere varies
with both ε and R. We have here run RBF-Direct to as low ε-values as possible before
it breaks down due to ill-conditioning and used RBF-QR for the remaining ε-range.
The large flat region for large R and small ε is a direct consequence of the 10−16

precision of standard floating point. The lower ε-limit for RBF-Direct is imposed by
ill-conditioning. There is no equally sharp upper limit for RBF-QR, but the conver-
gence in (3.4) degrades severely when ε increases above one. In the present case of
n = 1849, both methods work well in a narrow overlap region for ε slightly larger
than one. For lower values of n, the overlap becomes wider, whereas it may vanish for

1 1 9



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FLAT RADIAL BASIS FUNCTIONS ON A SPHERE 73

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

ε

N
e

a
rl
y 

u
n

ifo
rm

 n
o

d
e

 d
is

tr
ib

u
tio

n
R = 0.6 (wide)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ε

R = 0.4 (thin)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

ε

R
a

n
d

o
m

 n
o

d
e

 d
is

tr
ib

u
tio

n

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ε

RBF−Direct

RBF−QR

RBF−Direct

RBF−Direct RBF−Direct

RBF−QR

RBF−QR
RBF−QR

Fig. 4.4. Log-log plots of the max norm error vs. values of ε for the Gaussian bells of two
different widths. The subplots in the top row show the results with nearly uniform nodes and the
bottom row with random nodes. In both cases, the number of nodes was n = 1849. Note that the
vertical scales are different between the R = 0.6 and R = 0.4 plots.
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Fig. 4.5. Gaussian bell interpolation error for different values of the bell width R and MQ
shape parameter ε, in the case of n = 1849 near-uniform nodes. The dark line at an ε-value slightly
larger than one marks where we changed the algorithm in the calculation.

higher values of n (leaving some gap in the ε-range in which neither of the methods
will be practical unless the arithmetic precision is increased beyond standard double
precision).

1 2 0



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

74 BENGT FORNBERG AND CÉCILE PIRET
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Fig. 4.7. Cosine bell interpolation error for different values of the bell width R and MQ shape
parameter ε, in the case of n = 1849 near-uniform nodes.

4.2. Results for the cosine bell. Figure 4.6 shows that the lack of smooth-
ness of the cosine bell (featuring a discontinuous second derivative around its edge)
somehow causes much larger errors than in the Gaussian bell case, with especially
large errors arising as ε → 0 (the SPH case). Figure 4.7 displays, in the same style as
used earlier in the Gaussian bell case, the interpolation error as a function of ε and
R. In the Gaussian bell case, errors decrease very rapidly with increasing R (note
the different vertical scales in the two columns of subplots in Figure 4.4). The cosine
bell case is fundamentally different in that errors drop only weakly with increasing R

and also grow significantly as ε → 0. A more detailed discussion of this seemingly less
favorable situation (and two remedies that greatly improve the accuracy at small ε)
can be found in [13].

5. Some comments on the choice of �optimal” ε. By using RBF-Direct for
large ε and RBF-QR for small ε, we have the capability to compute RBF interpolants
(and also to solve PDEs) over a sphere for all values of ε (at least for up to a few
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thousands of nodes when using standard double precision). This offers new opportu-
nities for exploring issues such as determining an �optimal� ε and assessing whether
truncated SPH expansions (i.e., RBF in the ε → 0 limit) provide a �best possible�
representation of functions on a sphere.

As Figures 4.4 and 4.6 illustrated (and which has been seen in many earlier cal-
culations, e.g., [4], [9], [23], [35], [36]), the interpolation error when using RBF-Direct
often decreases monotonically with decreasing ε until some point ε = εic when dis-
astrous ill-conditioning kicks in. This has frequently raised the question of whether
still much better accuracy would be attained if the ill-conditioning somehow could be
eliminated. Previous results using the contour-Padé algorithm [14], [24] have shown
that this sometimes can be the case. With RBF-QR, we can now extend such tests to
much larger numbers of nodes. What the results in Figures 4.4 and 4.6 show is that the
trend of accuracy improvement (with decreasing ε) can get broken even without ill-
conditioning playing a role, although typically in a less abrupt way. There will often be
a quite well defined error minimum at some location εopt. In the presently chosen test
cases for interpolation, it so happened that εic ≈ εopt, whereas in other contexts, e.g.,
solving elliptic equations [24] or generating scattered-node finite-difference-type sten-
cils [46], it often happened that εic > εopt. Major improvements were then achieved
by computing well into a regime that was not reachable with RBF-Direct.

6. Conclusions. The recent work by Flyer and Wright [7] clearly demonstrated
the strengths of RBF methods for solving convective-type PDEs over spherical geome-
tries (computationally, the most difficult type of PDEs since they are dissipation-free;
also the most important case for many geophysical applications). The best accuracy
was then obtained when the basis functions were so flat (condition number for the
RBF-Direct approach often around or above 108) that the possibility of adverse effects
from ill-conditioning could not be ignored.

We have here presented a new computational algorithm RBF-QR that can over-
come this ill-conditioning even in the ε → 0 limit, thereby allowing a more extensive
study of how the choice of this shape parameter will affect computational accuracy.
The present test cases for interpolation have been followed up by tests for both short-
and long-time integration of a convective PDE [13]. While RBF-QR is the second
algorithm (following contour-Padé [14]) that allows stable computations when ε → 0,
it is the first one which is practical in the case of thousands of data points on the
surface of the sphere.

It follows from the RBF-QR algorithm that ε → 0 leads to the same results as
when using SPH basis functions. One might therefore ask why not just use SPH as a
computational basis on the sphere. There are several reasons for not doing that:

• The limit of ε → 0 is often not the best parameter choice.
• RBF can combine spectral accuracy with local refinement wherever this is

needed (cf. discussion on RBF Runge phenomenon in [16]); SPH offers no
such opportunities.

• Nonsingularity is guaranteed whenever ε > 0 but not for all node sets if ε = 0.

7. Appendix: A Matlab code for the RBF-QR algorithm. The test code
below computes and then plots the RBF interpolant to n data points. These data
are obtained from evaluating a test function at n random locations, marked as black
dots in Figure 7.1. The test function and the error (difference between it and the
interpolant) are also plotted. The shape parameter ε, the radial function, the number
of data points to interpolate, the resolution of the grid, and the test function can all
be easily modified in the initial driver part of the code. In the code listings below, the
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Fig. 7.1. The graphical outout of the demo code, showing the interpolation error to be of the
order 10−6 when ε = 10−8 in the n = 100 node test problem.

driver code is given first, followed by the main function RBF-QR and two supporting
functions, named COEF and SPH. The function COEF evaluates expansion coeffi-
cients according to the formulas in Table 3.2, and the routine SPH evaluates spherical
harmonics basis functions at specified locations. The code produces the output shown
in Figure 7.1.

% =============================== DRIVER CODE ======================================

clear all; close all

epsilon = 10^-6;

rbf = ’IQ’; % Basis function; valid choices: ’MQ’,’IMQ’,’IQ’,’GA’

n = 100; % Number of points to interpolate

rand(’seed’,4078) % Create n random node locations

theta = 2*pi*rand(1,n); randCos = 2*rand(1,n)-1; phi = acos(randCos);

[x,y,z] = sph2cart(theta,phi-pi/2,1);

fi = @(x,y,z) x.*exp(y-z); % Test function to interpolate

res = 50; m = res^2; % Resolution of the grid for evaluating the interpolant

f = fi(x,y,z); % Evaluate the data values to interpolate

% ___________________ Evaluation of the interpolant by RBF-QR ______________________

[theta_grid,phi_grid] = meshgrid(linspace(0,2*pi,res),linspace(0,pi,res));

theta_eval = reshape(theta_grid,1,res^2); phi_eval = reshape(phi_grid,1,res^2);

[xe,ye,ze] = sph2cart(theta_eval,phi_eval-pi/2,1);fe = fi(xe,ye,ze);

[beta R] = RBFQR(theta,phi,epsilon,f,rbf); index = 1;
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for mu = 0:sqrt(size(R,1))-1 % Each loop adds a block of columns of SPH of order mu

% to Y, evaluated at the grid points

Y(:,index:2*mu+index) = SPH(mu,theta_eval,phi_eval);

index = index + 2*mu + 1;

end

f_RBFQR = (Y*R*beta)’; % Call to RBFQR routine

% __________________ Plot of the interpolant and of the error ______________________

colormap(gray);

subplot(2,1,1)

surf(theta_grid,phi_grid,reshape(f_RBFQR,res,res),’FaceColor’,’none’,’LineWidth’,0.05)

axis([0 2*pi 0 pi min(f_RBFQR) max(f_RBFQR)]); hold on;

plot3(theta,phi,f,’k.’,’MarkerSize’,10); title(’Plot of the interpolant’);

view([-10,50]);xlabel(’\phi’); ylabel(’\theta’); set(gca,’ydir’,’reverse’);

subplot(2,1,2)

surf(theta_grid,phi_grid,reshape((f_RBFQR-fe),res,res),’FaceColor’,’none’,...

’LineWidth’,0.05)

axis([0 2*pi 0 pi min((f_RBFQR-fe)) max((f_RBFQR-fe))]); hold on;

plot3(theta,phi,zeros(size(f)),’k.’,’MarkerSize’,10); title(’Plot of the error’);

view([-10,50]); xlabel(’\phi’); ylabel(’\theta’); set(gca,’ydir’,’reverse’);

% ============================== FUNCTION RBFQR ====================================

function [beta, R_new] = RBFQR(theta,phi,epsilon,f,rbf)

% This function finds the RBF interpolant, with shape parameter epsilon, through the

% n node points (theta,phi) with function values f. It outputs beta, the expansion

% coefficients of the interpolant with respect to the RBF_QR basis. It calls the

% functions SPH(), which gives spherical harmonic values and COEF() which provides the

% expansion coefficients.

n = length(theta); Y = zeros(n); B = zeros(n);

mu = 0; index = 1; orderDifference = 0;

mu_n = ceil(sqrt(n))-1; %the order of the n_th spherical harmonic

while orderDifference < -log10(eps) %eps is the machine precision

% Each loop adds a block of columns of SPH of order mu to Y and to B.

% Compute the spherical harmonics matrix

Y(:,index:2*mu+index) = SPH(mu,theta,phi);

% Compute the expansion coefficients matrix

B(:,index:2*mu+index) = Y(:,index:2*mu+index)*COEF(mu,epsilon,rbf);

B(:,index+mu) = B(:,index+mu)/2;

% Truncation criterion

if mu > mu_n-1

orderDifference = log10(norm(B(:,[mu_n^2+1:(mu_n+1)^2]),inf)/...

norm(B(:,(mu+1)^2),inf)*epsilon^(2*(mu_n-mu)));

end

index = index+2*mu+1; mu = mu+1; % Calculate column index of next block

end

[Q,R] = qr(B); % QR-factorization to find the RBF_QR basis

E = epsilon.^(2*(repmat(ceil(sqrt(n+1:mu^2))-1,n,1) - ... % Introduce the

repmat(ceil(sqrt(1:n))-1,mu^2-n,1)’)); % powers of epsilon
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%Solve the interpolation linear system

R_new = [eye(n),E.*(R(1:n,1:n)\R(1:n,n+1:end))]’; beta = Y*R_new\f’;

% ================================ FUNCTION COEF ======================================

function c_mu = COEF(mu,epsilon,rbf)

% Returns the expansion coefficients in the cases of MQ, IMQ and GA radial functions.

switch rbf

case ’MQ’

c_mu = -2*pi*(2*epsilon^2+1+(mu+1/2)*sqrt(1+4*epsilon^2))/...

(mu+1/2)/(mu+3/2)/(mu-1/2)*(2/(1+sqrt(4*epsilon^2+1)))^(2*mu+1);

case ’IMQ’

c_mu = 4*pi/(mu+1/2)*(2/(1+sqrt(4*epsilon^2+1)))^(2*mu+1);

case ’IQ’

c_mu = 4*pi^(3/2)*factorial(mu)/gamma(mu+3/2)/(1+4*epsilon^2)^(mu+1)*...

hypergeom([mu+1,mu+1],2*mu+2,4*epsilon^2/(1+4*epsilon^2));

case ’GA’

c_mu = 4*pi^(3/2)*exp(-2*epsilon^2)*besseli(mu+1/2,2*epsilon^2)/...

epsilon^(2*mu+1);

end

% =============================== FUNCTION SPH =====================================

function SPHBlockMu = SPH(mu,theta,phi)

% Returns a matrix containing the spherical harmonics of order mu, evaluated at the

% (theta,phi) node points.

n = length(theta);L_mu_nu(:,1:mu+1) = legendre(mu,cos(phi))’; a = 0:mu;

t = repmat(sqrt(factorial(1+mu-a-1)./factorial(1+mu+a-1)),n,1) ...

.*L_mu_nu(:,a+1).*exp(i*repmat(a,n,1).*repmat(theta’,1,mu+1));

SPHBlockMu = sqrt((2*mu+1)/(4*pi))*[imag(t(:,end:-1:2)),real(t)];
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abeth Larsson are gratefully acknowledged. Comments from two referees have been
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Abstract

Radial basis function (RBF) approximations have been used for some time to in-
terpolate data on a sphere (as well as on many other types of domains). Their
ability to solve, to spectral accuracy, convection-type PDEs over a sphere has been
demonstrated only very recently. In such applications, there are two main choices
that have to be made: (i) which type of radial function to use, and (ii) what value
to choose for their shape parameter (denoted by ε, and with flat basis functions
-stretched out in the radial direction- corresponding to ε = 0). The recent RBF-QR
algorithm has made it practical to compute stably also for small values of ε. Results
from solving a convective-type PDE on a sphere are compared here for many choices
of radial functions over the complete range of ε-values (from very large down to the
limit of ε → 0). The results are analyzed with a methodology that has similarities
to the customary Fourier analysis in equispaced 1-D periodic settings. In particular,
we find that high accuracy can be maintained also over very long time integrations.
We furthermore gain insights into why RBFs sometimes offer higher accuracy than
spherical harmonics (since the latter arise as an often non-optimal special case of the
former). Anticipated future application areas for RBF-based methods in spherical
geometries include weather and climate modeling.
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1 Introduction

Many application areas, such as geophysics (including weather and climate
modeling), astrophysics, quantum mechanics, etc. require PDEs to be solved
in spherical geometries. Flyer and Wright [7], [8] have recently shown that an
RBF-based pseudospectral (PS) approach can be very successful for solving
wave-type PDEs (such as pure convection equations and the shallow water
equations) on a spherical surface. Compared to other spectral approaches, such
as double Fourier methods [13], [29], [30], [36], spherical harmonics methods
[2], [19], [21], [38], [40], and spectral element methods [18], [31], [37], [39], [41],
they found the RBF approach to be particularly promising since it features

• algebraic simplicity (complete codes for PDE test cases are often less than
50 lines of Matlab),

• immediate generalizability from spherical to arbitrarily shaped surfaces, and
• opportunities for combining spectral accuracy with local refinement.

Most RBFs depend on a shape parameter ε, with ε → 0 corresponding to
the limit of increasing flatness. Lowering the value of ε usually increases the
resulting accuracy to some point when one or both of the following two factors
halt or reverse this trend:

(1) Onset of disastrous numerical ill-conditioning if using a direct implemen-
tation of the RBF procedure (denoted RBF-Direct, to be explained in
Section 2.1)

(2) Onset of a Runge phenomenon reminiscent of that for polynomial inter-
polation, as explained in [17], Section 3 (potentially disastrous mainly in
the presence of boundaries or variable node densities, else mainly setting
a limit for the accuracy that can be reached).

Figure 1 illustrates these two factors in three different cases from the literature.
The top row of subplots shows how the error varies with ε when solving a Pois-
son equation over a unit disk, as described in [25]. The dashed comparison line
shows the accuracy that is reached with the previously most accurate available
procedure, Fourier pseudospectral (PS) in the angular direction and Cheby-
shev PS radially. In all cases, the resolution was 16 nodes on the boundary and
48 in the interior. In the top right subplot, computational ill-conditioning for
small ε was eliminated with the Contour-Padé algorithm [15]. The middle row
of subplots shows similar trends in the context of interpolating a Gaussian bell
over the surface of a sphere when using n = 1849 nearly uniformly distributed
nodes. For further details in this case, see [14]. The RBF-QR algorithm, in-
troduced in that work, was used (instead of the Contour-Padé algorithm) to
eliminate the ill-conditioning for the right subplot. The single subplot in the
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bottom row (with data and further explanations given in [7]) shows the max
norm error after a cosine bell has been convected once around the sphere when
solving the time dependent PDE (5), to be described later in Section 3. The
main goal of the present study is to explore this last test case further, in partic-
ular when the numerical ill-conditioning for low ε-values has been eliminated.
By means of both numerical computations and through some novel analysis,
we will

(1) Explore how the accuracy varies with
• RBF type,
• Shape parameter (for full range of ε ≥ 0),
• Length of time integration.

(2) Discuss the ε = 0 case since this, as was found in [14], is usually equivalent
to using spherical harmonics (SPH) in place of RBFs.

We present in Section 2 first a very brief introduction to RBF interpolation,
and we then quote some relevant results from the literature, such as the signif-
icance of the flat basis function limit. The convective PDE and results using
one type of RBF discretization are presented in Section 3. We extend in Sec-
tion 4 these results to also include a large number of different RBF choices,
again over the full range of ε-values. In the present context, the differences in
performance between the smooth RBF types are found to be minor, whereas
the performances of the non-smooth RBF are much inferior. Some of these
results can be understood through the analysis in Section 5, generalizing to
scattered node situations on the sphere the Fourier-based arguments that are
routinely used on equispaced periodic problems in 1-D. In Section 6, focusing
on summaries and conclusions, we again address why (in the present context
of long time integration), smooth basis functions are superior to non-smooth
ones, regardless of whether the solution that is convected is smooth or not.
The Appendices A and B provide technical details on some RBF-QR imple-
mentation issues.

2 RBF methodology

2.1 The form of an RBF interpolant

The basic RBF interpolant takes the form

s(x) =
n∑

i=1

λi φ(‖x − xi‖), (1)
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where || · || denotes the Euclidean norm. In order for it to take the values fi

at locations xi, i = 1, 2, . . . n, the expansion coefficients λi need to satisfy

A λ = f (2)

where the entries of the matrix A are Ai,j = φ(||xi−xj||). We denote numerical
use of (2) followed by (1) as ”RBF-Direct”. In this study, we will concentrate
our attention on the radial functions φ(r) listed in Table 1. The parameter ε,
included in all but the piecewise smooth global cases CU and TPS, is known
as the shape parameter. The listed Wendland functions [43] are those of lowest
degree which guarantee that the A-matrix is positive definite for all distinct
node locations in 2 and 3 dimensions. This property holds in all dimensions
also for IMQ, IQ, and GA. In the MQ, CU, and TPS cases, A is still symmetric.
For MQ, non-singularity remains guaranteed, but positive definiteness is lost.
Additional issues arise in the CU and TPS cases. Commonly used variations
of (1) are for MQ

s(x) = α +
n∑

i=1

λi φ(‖x − xi‖), with the constraint
n∑

i=1

λi = 0 (3)

and for CU and TPS

s(x) = α + βx + γy + δz +
n∑

i=1

λi φ(‖x − xi‖), (4)

with the constraints

n∑

i=1

λi =
n∑

i=1

λixi =
n∑

i=1

λiyi =
n∑

i=1

λizi = 0 .

For more detailed discussions, see [3], [33] and [35].

The most notable feature of the Wendland functions is their compact support
in case ε is large, leading to sparse A-matrices, and therefore with possibilities
for high computational speeds both in evaluating (1) and in solving (2) (for
example if using conjugate gradient-type methods). In the present case with
nodes on the unit sphere, all sparsity is lost if ε < 1

2
.

2.2 RBFs for PDEs

In 1990, Kansa introduced collocation with RBFs as a means to approximate
spatial derivatives, and thus to numerically solve PDEs [22], [23]. In case of
smooth RBFs, this approach is typically spectrally accurate [4], [28], [47].
Another notable advantage with this RBF approach (compared to, say, finite
difference, finite element, and finite volume methods) is that it replaces the
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often challenging task of creating computational meshes over irregular domains
with the easier one of scattering computational nodes.

Driscoll and Fornberg [5] observed that, in the flat basis function limit ε → 0
for globally smooth RBFs in 1-D, the interpolant in general converges to La-
grange’s interpolation polynomial. From this follows that the RBF approach
for PDEs can be viewed as a generalization (to irregular domains and to scat-
tered nodes) of the pseudospectral (PS) method [1], [10], [42]. This approach
is therefore nowadays often described as the RBF-PS method. In a 1-D peri-
odic setting, the ε → 0 limit will reproduce the Fourier-PS method [5]. For
nodes on a sphere, the corresponding limit was found in [14] to agree with a
spherical harmonics (SPH-PS) method. More results about RBF in the flat
basis function limit can be found for example in [11], [12], [16], [26], [34].

As noted in the introduction, Flyer and Wright [7] were the first to use RBFs
to solve purely convective (i.e. non-dissipative) PDEs over a spherical surface.
Because they implemented their scheme based on direct use of (2) followed
by (1), ill-conditioning prevented their numerical explorations from being ex-
tended also to arbitrarily small values of ε.

Much more materials on both ‘RBF methodology’ and ‘RBFs for PDEs’ can
be found in the two recent books [43] and [6].

3 Time dependent PDE on a sphere

3.1 Test problem

The standard PDE test problem that we will consider describes ‘solid body’
rotation/convection around an axis that is inclined by the angle α relative to
the polar axis (cf. [7], [13], [44], and Figure 2 a). Following the convention in
many applications, we define spherical coordinates as shown in Figure 2 b






x = ρ cos ϕ cos θ

y = ρ sin ϕ cos θ

z = ρ sin θ

.

This differs from standard spherical coordinates (as used for ex. in [14]) both
in the use of latitude (as opposed to co-latitude) and also in the directions
denoted by θ and ϕ. In the present coordinates, the governing PDE becomes

∂u

∂t
+ (cos α − tan θ sin ϕ sin α)

∂u

∂ϕ
− cos ϕ sin α

∂u

∂θ
= 0. (5)
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One full revolution will correspond to the time t = 2π.

The pole singularities enter through the tan θ factor when θ = ±π
2
. These

singularities are not physical, but arise only as a consequence of the (θ, ϕ)-
system itself being singular at these locations. When the RBF differentiation
matrix (DM, representing the spatial operator of (5) in terms of the node
values of u) is formed as described in [7], these singularities will therefore
vanish (the DM reflects the physical operator, but not what coordinate system
it happened to be expressed in during an intermediate derivation step).

The initial condition that we will use is the Cosine bell, shown in Figure 3. It
can be described in Cartesian coordinates as

u(x, y, z, 0) =






1
2
(1 − cos( π

R
arccos x)) x > cos R

0 x ≤ cos R
, (6)

with R = 1/3, and restricted to the surface of the unit sphere.

Cosine bells have become standard initial conditions for convective test cal-
culations on a sphere [21], [31], [36], [39] for several reasons:

(1) Their compact support makes it particularly easy to display and to in-
terpret dispersive errors after convection,

(2) The easy-to-change peak width R allows testing to be carried out on
different spatial scales,

(3) The discontinuous second derivative at the base of the bell prevents very
high order methods from producing misleadingly good results compared
to what might be expected in cases of more physically relevant data.

3.2 Different node distributions

Because of the clear advantages seen in previous works [7], [14] of using near-
uniform rather than fully random node distributions, we limit the discussion
here to the former case. When interpolating using SPH, Womersley and Sloan
[45], [46] noticed very large differences also between different types of near-
uniform distributions. The two near-uniform node sets that are used in this
study are both taken from [45], and are shown in Figure 4. They are described
as ‘minimal energy’ (ME) and ‘maximal determinant’ (MD), respectively. The
former can be obtained as the equilibrium of freely moving nodes on the sphere
surface, repelling each other like equal point charges. In the MD case, node
locations are instead obtained by maximizing the determinant of a certain
‘Gram matrix’. Womersley and Sloan report that SPH interpolation errors
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(measured in any standard norm, or as a Lebesgue constant) can be several
orders of magnitude larger in ME than in MD cases. Since RBF interpolation
in the ε → 0 limit usually corresponds to SPH interpolation, it is not surprising
that the choice of nodes (ME vs. MD) will influence the RBF accuracy also for
non-zero ε (although gradually less so when ε is increased, as will be illustrated
in Section 3.4).

3.3 Method of lines (MOL) formulation and time stepping considerations for
the PDE test problem

The test problem (5) can be written more briefly ∂u
∂t

+ L(u) = 0, where L is
the spatial derivative operator. The RBF-Direct-based DM that arises when
approximating the spatial derivative terms in (5) was shown in [7] to take the
form

D = B · A−1 , (7)

where B is antisymmetric, with elements

Bi,j = L φ(||x − xj||)|x=xi
, (8)

and A is defined in (2), with elements

Ai,j = φ(||xi − xj||) . (9)

We will here compute this matrix D either immediately through (7)-(9) (RBF-
Direct), or via RBF-QR, as described in Appendix A. The ill-conditioning
problem with RBF-Direct originates from the fact that, as ε → 0, A becomes
very nearly singular, causing elements of A−1 to diverge to plus or minus
infinity. A vast amount of numerical cancellation then occurs when the O(1)-
sized matrix D is formed as the matrix product (7).

The key concept behind the RBF-QR algorithm is the recognition that the
basis functions φ(||x − xi||), i = 1, 2, . . . , n, when ε is small, form a terrible
base that nevertheless spans an excellent approximation space. The RBF-QR
algorithm expands each basis function in a SPH series, after which it transpires
that we can obtain a very well conditioned base spanning exactly the same
space. Using this new base bypasses the ill-conditioning but leads otherwise
to identical results. Explained somewhat differently: For all values of ε, the
entries of D behave in a well-conditioned way with respect to perturbations in
the input data, i.e. the node locations xi. In the case of small ε, RBF-Direct
is an ill-conditioned algorithm for numerically computing D, while RBF-QR
is a well-conditioned one.

A matrix that is a product of an antisymmetric and a positive definite one
can only have purely imaginary eigenvalues. The DMs that arise from RBF
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discretization of the spatial operator in (5) will thus be of this type for the
positive definite RBF choices in Table 1 (IMQ, IQ, GA, W2, W4, W6). Stan-
dard time stepping methods, such as the fourth order Runge-Kutta method
(RK4), will therefore be applicable, no matter how the nodes are scattered
over the surface of the sphere. An extension to the result above, given in [32],
extends it to (3) or (4) rather than (1) in the remaining cases of MQ, CU and
TPS. In the present tests, we found the eigenvalues to be purely imaginary
also without invoking this extension, allowing us to use (1) in all cases.

Numerical tests using RBFs for convecting the cosine bell (as well as results for
the second test problem in [44]) were presented in [7]. The errors they reported
after a computational time corresponding to one full revolution around the
sphere (t = 12 days in their notation, t = 2π in our notation) come from three
different sources:

(1) Time stepping errors in the RK4 scheme,
(2) Properties of the DM,
(3) Errors when the numerical solution, defined at the grid points, is inter-

polated and compared against the analytic solution across the complete
sphere.

The issue (1) can be resolved by using small enough RK4 time steps, so that
the error types (2) and (3) will dominate (this still allows much longer time
steps to be taken than what is feasible in the alternative methods, as reported
in [7]; see also the discussion here in Section 5). In order to more clearly
analyze the errors coming from the DM (issue 2), we will here make use of the
fact that the discretized test problem can be integrated analytically in time.
Letting u(t) denote a column vector with n entries, containing the numerical
approximations at the n node points as functions of time, the discretization
of (5) takes the form

∂u

∂t
+ D u = 0 , (10)

for which the analytic solution is

u(t) = e− tD u(0) .

3.4 Numerical tests using IMQ RBF

The RBF-QR method is based on certain series expansions which involve
powers of ε, and these might fail to converge for large ε. In contrast, RBF-
Direct fails due to ill-conditioning for low values of ε. If the number of nodes
n is relatively low (such as n = 1849 used throughout this study), there will
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usually be some range in which both methods work, but this overlap can get
lost as n is increased further.

The first issue that arises (already at time t = 0, i.e. before time stepping
has even started) is how accurately the cosine bell will be represented as
an RBF interpolant of the discrete initial data that is shown in Figure 3 c.
Figure 5 (for SPH, i.e. for most smooth RBFs in their ε → 0 limit) and
the curve marked ‘Interpolation’ in Figure 6 a (for a wide range of ε values)
show that direct interpolation based on the values at the n = 1849 ME nodes
can lead to very large errors in-between the node points (positioned as seen
in Figures 3 c and 4). This is entirely in agreement with the observations
in [46]. The error level drops significantly when ε is increased from ε = 0,
and it is particularly low around 2 . ε . 10 (Figure 6 a). Only here is the
error comparable to what is obtained with MD nodes throughout the full
range 0 ≤ ε . 10 (Figure 6 b), confirming that the latter node type offers
much more ‘robust’ interpolation. However, a still better option with regard
to obtaining a uniformly good RBF representation of the initial condition is
possible through a least squares approach, and is illustrated by the curves
marked ‘Least squares’ in Figures 6 a-d. These RBF representations were
obtained by a 2-stage process of first finding the best representation of the
analytic initial condition (the cosine bell) in terms of SPH up to order µ =√

n = 43 (also featuring µ2 = n = 1849 free parameters) through least squares
over a much denser point set, followed by evaluation of this SPH approximation
back at the original n = 1849 node points. With this initial filter-type step, we
obtain the initial condition across the full sphere with higher accuracy than
was the case with immediate interpolation using either of the ME or MD node
sets. Furthermore, the accuracy becomes almost completely independent of the
details of the node distributions. Figures 6 c, d illustrate that the piecewise
smooth RBF are much less sensitive in this regard (of ME vs. MD). In all the
computations that are described below, we use ME nodes and this least square
procedure to get the RBF representation of the initial condition at t = 0 . The
same filter-type strategy as described above is a routine part of most SPH-PS
calculations, then typically applied at every time step rather than as here only
at t = 0.

Figures 7 a,b show how the accuracy at t = 10 and t = 10, 000 vary with ε in
the cases of IMQ and W6 - typical results for a smooth and a piecewise smooth
radial function, respectively. Including two more RBF types, Figures 8 a,b
show the time evolution of the error over 0 ≤ t ≤ 10 and over 0 ≤ t ≤ 10, 000,
respectively. We notice that the error degrades severely in time for non-smooth
RBF, whereas it holds up extremely well for the smooth ones. In these and the
following cases, the error was measured as the maximal discrepancy compared
to the analytic solution, over the n = 1849 node points.

We extend next these comparisons to include all the radial functions listed in
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Table 1.

4 Comparisons between different RBF types

There has been numerous suggestions in the literature that some types of
RBFs generally tend to give more accurate results than others. For example,
MQ is often particularly highly regarded, whereas concerns have been raised
against GA, sometimes for the reason that GA does not support any ‘exact
polynomial reproduction’ properties on infinite lattices (when ε > 0) [3].

The accuracy that is achieved by different RBF methods is highly problem
dependent. For example, interpolation of non-smooth data places very differ-
ent demands on the method than does long-term solution of convective-type
PDEs. With the combination of RBF-Direct and RBF-QR, we have now the
ability to run the convective test problem for the full set of RBFs shown in
Table 1, throughout the full range of ε (from zero and upwards), giving the
results shown in Figures 9 and 10. As we have noted already, smooth RBFs
give excellent accuracy (not much different from the initial error at t = 0) also
over very long time integrations. The differences between these smooth RBFs
are in the present context seen to be very minor in comparison to the much
more rapid loss of accuracy seen for the piecewise smooth RBF. These latter
ones differ between themselves largely according to their smoothness, with the
higher order ones (such as W4 and W6) being more accurate than, say, TPS,
CU, or W2. In order to offer some accuracy over longer time integrations, also
the Wendland functions need to be scaled so that they become relatively flat
(ε small), causing their A-matrices to lose its sparseness. However, since the
Wendland-based D-matrices (7) are never sparse, these RBFs do not (in the
present PDE context) seem to offer any speed advantages over the standard
smooth RBF types.

In Table 1, we have included ε for all the RBF types apart from CU and TPS.
In the case of CU, including ε (i.e. using φ(r) = |εr|3) would be pointless,
since all results would turn out ε independent. Thus we always use φ(r) = |r|3
for CU. Regarding TPS, there would in fact be a weak ε dependence, which
mainly would manifest itself in an additional type of singularity as ε → 0,
with no apparent redeeming features. Thus, all TPS results that we give are
based on φ(r) = r2 log |r|. When CU and TPS results are displayed in Figures
9 and 10, they are thus displayed as ε-independent straight lines (although
this is not strictly true in the case of TPS).
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5 Analysis of the numerical results via properties of the DMs

The numerical results in Sections 3.4 and 4 can be understood through spectral
analysis that is conceptually similar to Fourier analysis of equispaced finite
difference (FD) and RBF approximations to the model equation

∂u

∂t
+

∂u

∂x
= 0 . (11)

These steps are explained in the next subsections.

5.1 1-D equispaced FD approximations

It has been explained and illustrated repeatedly in the literature (with [9]
and [24] being early references) how the accuracy of a FD scheme can be
understood from how it acts on individual Fourier modes. Since

d

dx
eiωx = i ω eiωx ,

u(x) = eiωx is an eigenfunction to the d
dx

-operator. If we consider the discrete
situation with a grid spacing h, the possible frequency range (due to aliasing)
is ω ∈ [−ωmax, ωmax] where ωmax = π

h
. Applying a FD2 (centered second order

FD) scheme to u(x) = eiωx similarly gives

u(x + h) − u(x − h)

2h
=

eiω(x+h) − eiω(x−h)

2h
= i

sin ωh

h
eiωx , (12)

i.e. the Fourier mode is again an eigenfunction, but the eigenvalue has changed
from iω to i sinωh

h
. Ignoring for now the factor “i”, the eigenvalues are

fPS(ω) = ω and fFD2(ω) = sin ωh
h

, respectively Figure 11 illustrates these
eigenvalues, as functions of ω, together with similar factors also for some FD
methods of higher orders. While the PS method (limit of FD methods of
increasing orders, cf. [10]) correctly treats all modes that can be represented
on a grid with spacing h, lower order FD methods contain significant errors in
all modes. In the context of time integration of (11), these errors correspond
to errors in the phase speed of traveling waves. The longer a time integration
extends, the larger number of high modes will end up out of phase, and thereby
become ‘lost’ as far as contributing to the overall accuracy. The lower the order
of the FD approximation is, the more severe will this degradation over time
become.

If we furthermore simplify by setting h = 1 (i.e. consider a unit-spaced infinite
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1-D grid), we find

fFD2(ω) = (sin ω)

fFD4(ω) = (sin ω)(1 + 2
3
(sin ω

2
)2)

fFD6(ω) = (sin ω)(1 + 2
3
(sin ω

2
)2 + 8

15
(sin ω

2
)4)

(13)

etc. ,

with a closed form expression for arbitrary orders given originally in [24]; see
also [10], page 41. If we use an initial condition for (11) that, at locations
x = k integer, is described by

u(k, 0) =
π∫

0
û(ω) cos ωk dω ,

for some function û(ω), the analytic-in-time FD solution at time t (again at
the locations x = k integer) becomes

u(k, t) =
π∫

0
û(ω) cos(ωk − f(ω) t) dω .

If we also want to ‘translate away’ the unit-speed sideways shift of perfectly
traveling waves, so that we only see the dispersive influence of the spatial
approximations, we need only modify this relation to

u(k, t) =
π∫

0
û(ω) cos(ωk + (ω − f(ω)) t) dω . (14)

In the case of a narrow Gaussian initial bell, direct numerical evaluation of
this integral produces the solutions shown in Figure 12. It is clear that the low
order FD2 method looses its accuracy almost immediately whereas the higher
order FD methods manage to keep somewhat more of the pulse integrity over
longer times. However, a severe dispersive trailing wave train develops in all
cases.

5.2 Dispersive errors in case of 1-D RBF approximations

Figures for RBF approximations, corresponding to Figure 11 for FD approx-
imations, were presented in [11]. For ε → 0, the curves were seen to rapidly
approach the ideal PS straight line case. In the case of IQ RBF, the counter-
part to (13) was found to take a particularly simple form

fIQ(ω) = ω − π sinh ω
ε

sinh π
ε

cosh π−ω
ε

. (15)

12

1 4 0



For the same test cases as illustrated for FD methods in Figure 12, again by
numerically evaluating (14), we obtain for IQ RBF the results seen in Figure
13. While a large value of ε is somewhat acceptable at short times, high long-
term accuracy is very clearly seen to benefit from smaller values of ε. Although
the RBF scheme is spectrally accurate (as the node density is increased) for
all values of ε, these solution pictures for fixed h = 1 and different ε are
nevertheless reminiscent of the ones for increasing order FD schemes (Figure
12). This is because of the similarities just described in how the eigenvalues
of the derivative approximations vary with the Fourier frequency.

We will next carry the analysis of Sections 5.1 and 5.2 over to the case of RBF
nodes scattered over the surface of a unit-sized sphere.

5.3 Dispersive errors in case of convection over the sphere

In this geometry, SPH modes Y ν
µ (x), µ ≤ µmax, ν = −ν, . . . ,−1, 0, 1, . . . , ν,

form a counterpart to a truncated set of Fourier modes in a periodic 1-D case.
Some low modes (up to µmax = 4) are illustrated in Figure 14.

As we have already noted, when the spatial operator in (5) is approximated
based on (1) or, if needed, instead by (3) or (4), all the DM’s eigenvalues will
be purely imaginary. From [14], we know that, as ε → 0, the space spanned
by n = µ2

max globally smooth RBF will exactly agree with the SPH space for
µ ≤ µmax. We can now add to these observations that, in this limit of ε → 0,
the n = µ2

max RBF DM eigenvalues will approach

µmax + 1 eigenvalues 0

µmax eigenvalues +i and equally many −i

µmax − 1 eigenvalues +2i and equally many −2i
...

1 eigenvalue +µi and also one eigenvalue −µi

. (16)

This can be deduced from two further observations:

(1) Truncated SPH expansions form a closed set with respect to any coor-
dinate system rotation, making a result such as this independent on the
value of α in (5)

(2) For α = 0, an inspection of the patterns seen in Figure 14 shows that
the µmax + 1 functions in the center column (ν = 0) are unaffected by
any rotation around the polar axis (leading to µmax + 1 eigenvalues 0);
the µmax functions for ν = +1 and likewise for ν = −1 repeat themselves
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after one revolution; the next group after 1/2 revolution, then after 1/3
revolution, etc.

Keeping α = 0 and, to make the graphics less cluttered, choosing µmax = 23
with n = µ2

max = 529 (rather than, as elsewhere this study, n = µ2
max = 1849),

the eigenvalues, as functions of the SPH parameters µ and ν in the case of
ε = 0 thus become as shown graphically in Figure 15. This flat triangular
section of a plane corresponds to the PS straight line in Figure 11 and the
similar straight line for ε = 0 in Figures 4.2 and 4.3 in the reference [11].
Raising ε from zero will cause deviations from the ideal eigenvalue pattern
displayed in Figure 15. Figure 16 a displays in a different way than in Figure
11 how the eigenvalues in the 1-D FD case vary with the order p of the FD
schemes. Their extent along the imaginary axis decreases by a factor of π when
we move from p = ∞ (PS) to p = 2.

Figure 16 b shows similarly how the SPH (ε = 0) eigenvalues, seen previously
in Figure 15, change as ε is increased from zero. In the left column, we see
(according to (16)) only 2 · 23 + 1 = 47 distinct eigenvalues (out of a total
of n = 529 eigenvalues). As ε increases, the largest eigenvalues decrease the
fastest, leaving the lowest ones unchanged the longest. The ‘corruption’ of
increasingly many eigenvalues in the RBF sphere case as ε increases is very
reminiscent of how the same occurs in the 1-D equispaced case when the FD
order is brought down from infinite (PS) to low order. The range of eigenvalues
in these different cases will next be used to explore the time step restrictions
that will need to be met for explicit time stepping methods.

5.4 Time stepping stability condition in 1-D

In the equispaced 1-D case of (11) with ∂u
∂x

approximated by centered FD
approximation of order p, the time stepping stability condition is that the
eigenvalues of the spatial operator, described by if(ω) and graphically il-
lustrated for p = 2, 4, 6, 20, 120 in Figures 11 and 16 a, fall within the time
stepping methods stability domain, defined as usual in a complex ξ = λk do-
main, where the time stepping scheme is applied to ut = λu with the time
step k. For example, if we use leap-frog (LF) in time (which features as its
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stability domain the line section between ξ = +i and ξ = −i), we get

FD method Condition on k/h

FD2 < 1

FD4 < 0.7287

FD6 < 0.6305

· · · · · ·
PS < 1

π
≈ 0.3183

The maximum permissible values of k/h can be read off directly from the
(inverse of the) maximum values of the corresponding curves in Figure 11,
which in turn corresponds to the heights of the columns in Figure 16 a. For
the LF-FD2 case, the actual stability condition thus exactly matches the re-
sult imposed by the CFL (Courant-Friedrichs-Levy) condition. As the order
of spatial accuracy is increased from 2 to ∞, the actual stability condition be-
comes more restrictive by a factor of π (whereas the CFL condition becomes
less sharp and fails to rule out increasingly long time steps).

Using (15) in place of (13), we get similar conditions on k/h (strictly valid
only in our present case of h = 1; for details about an additional type of
h-influence, see [11]):

IQ RBF Condition on k/h

ε = 1 < 0.6997

ε = 0.5 < 0.4771

ε = 0.2 < 0.3803

· · · · · ·
ε = 0 (PS) < 1

π
≈ 0.3183

The PS limit occurs in both cases (as FD order → ∞ or in RBF cases as
ε → 0, respectively). With regard to these stability conditions, there are only
very minor differences between the smooth RBF types.

5.5 Time stepping stability condition on the sphere

On the sphere, we can see from the results in Figure 16 b how the extent
of the purely imaginary eigenvalue spectrum varies with ε. As we move from
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ε = 0 (SPH) to ε ≈ 1, the spectrum shrinks by less than 10%. Importantly -
and in contrast with for example spectral elements or Chebyshev-type spectral
methods - there are no spurious eigenvales further out in the complex plane
than where the actual physical eigenvalues are located. The estimate below is
made based on ε = 0. Scattering n = µ2 points on the sphere, we see from
(16) that the largest eigenvalue is µ = n1/2 in magnitude. With any type of
near-uniform (locally hexagonal-like) node distribution, the distance between

adjacent nodes (for n = µ2 large) becomes approximately h =
(

8π
n
√

3

)1/2
, i.e.

with LF time stepping, we would need to use

k

h
<

(√
3

8π

)1/2

≈ 0.2625 . (17)

The longest possible stable time step for any ε-value on the sphere is thus not
much different from the one in the case of PS for 1-D equispaced nodes, when
expressed in terms of the ratio k/h. This could have been expected since, in
both test problems, the maximal physical velocity is unity and no spurious
eigenvalues are present. If one uses, say, RK4 in place of LF, all the stability
conditions get multiplied by 2

√
2, i.e. for ε = 0 we get in 1-D k/h < 0.9003

and on the sphere k/h < 0.7425.

6 Summary and Conclusions

6.1 Background to present work

The recent work by Flyer and Wright [7] clearly demonstrated some key
strengths of RBF methods for solving convective-type PDEs over spherical
geometries. These PDEs are particularly challenging computationally because
any inaccuracies that are introduced will not only persist but will also accu-
mulate indefinitely. At the same time, these PDEs are very important in many
geophysical applications in which convection strongly dominates over dissipa-
tion. For the model problem (5), the work in [7] was limited to GA RBF with
ε & 1 and the only integration time that was considered was one full revolu-
tion, in our notation t = 2π ≈ 6.28. In this particular case, our corresponding
result can be represented as seen in Figure 17, which can be used to fill the
empty bottom right subplot space in Figure 1. We have otherwise in this work
avoided showing errors at times that correspond to an exact integer number
of revolutions. This is because measuring the error as we are doing it (at node
points only) would then always give zero convection errors in case of ε = 0,
and thus might be misleadingly good also for low values of ε. However, the
fact that we always start with a least square approximation means that the
errors we show nevertheless are a good measure.
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We have in the present work extended the earlier calculation in three aspects:

• Tested with a large number of different types of radial functions,
• Computed stably for ε-values all the way down to ε = 0,
• Presented results at both short (t = 10) and long (t = 10, 000) times,

in order to contrast time scales appropriate for weather and for climate
modeling, respectively.

6.2 Main Conclusions

It follows both from the present numerical results and from the accompanying
analysis that very long time integrations are completely feasible with the RBF
approach, but that the shape parameter ε then will need to be kept quite low,
especially when integration times increase (typically bringing the computa-
tions out of reach for the RBF-Direct approach when using standard 16 digit
double precision arithmetic). All of the smooth RBF give virtually the same
accuracy, whereas the piecewise smooth ones are not at all competitive in the
present context.

These general results just mentioned follow from properties of the DMs, i.e.
they are not influenced by the smoothness of the convected solution. This
observation is similar to the one for PS vs. FD methods, as described in [10],
Section 4.2, where it was shown that PS and high order FD methods were much
better than low order FD methods, even when convecting a step function. In
case of interpolation (rather than long-time advection), the situation is quite
different and there will in that application probably be little point using basis
functions that are much smoother than the data they are applied to.

At n = 1849 nodes (as used in all the calculations in the present study), it
so happened that RBF-Direct just barely (with the perfect choice of ε) could
reach the error level that RBF-QR featured for all sufficiently small ε. It is at
present unclear whether this will remain the case if n is increased further.

It follows from the RBF-QR algorithm that ε → 0 with globally smooth RBF
leads to the same results as using SPH basis functions. One might therefore
ask why not just use SPH as a computational basis on the sphere (as has often
been done in the past). There are however several reasons in favor of an RBF
approach:

• The limit ε → 0 is not always the best parameter choice.
• RBFs can combine spectral accuracy with local refinement wherever this is

needed (cf. discussion in [17]); SPH offer no such opportunities.
• RBF non-singularity is guaranteed whenever ε > 0, but not for all node sets
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if ε = 0.
• Typical SPH-PS implementations require conversions between SPH and

node values on some dense grid at every time step.
• RBF codes are algebraically far less complex than SPH codes (even when

implemented by means of the RBF-QR method; cf. the Appendix in [14]).

The main present concern about RBF-based methods stems from their global
character, and the associated cost of full matrix×vector multiplications at each
time step. Although this task is well suited for massively parallel processing,
it would nevertheless be desirable to be able to effectively apply either ‘fast’
(iterative) algorithms, or domain decomposition. Both these avenues have seen
significant progress in recent years, but will not be surveyed here.

7 Appendix A: Construction of the DM with RBF-QR

The key step in the RBF-QR algorithm, as described in [14], is that a column
vector containing the original RBF basis functions can be rewritten as a certain
matrix product times another column vector that contains SPH functions:





φ(‖x − x1‖)
φ(‖x − x2‖)
...

φ(‖x − xn‖)





=




Q








E








R









y
1
(x)





.

Here Q is unitary, E is diagonal (with entries that are increasingly high powers
of ε), and R (with more columns than rows) is upper triangular (This equation
holds to computational machine precision but not in a strict mathematical
sense unless we let the number of columns in R and entries in y

1
(x) be infinite).

Transposing this relation gives

[
φ(‖x − x1‖) . . . φ(‖x − xn‖)

]
= (R y

1
(x))T ET QT . (18)

Next, applying this relation in turn to x = x1, . . . , x = xn and placing the
resulting row vectors below each other allows us to allows us to write A (defined
in (2) and (9)) as

A = (R Y1)
T ET QT .
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All the ill-conditioning of A is now confined to the analytically known matrix
ET . Next we apply the differential operator L to (18) and obtain

[
Lφ(‖x − x1‖) . . . Lφ(‖x − xn‖)

]
= (R y

2
(x))T ET QT

(where y2(x) = L y1(x)) and therefore, after applying this to x = x1, . . . , x =
xn ; cf. (8),

B = (R Y2)
T ET QT .

Because of (7), the DM then becomes

D = B · A−1 = (R Y2)
T (ET QT )(ET QT )−1((R Y1)

−1)T

= (R Y2)
T ((R Y1)

−1)T = ((R Y1)
−1(R Y2))

T
.

Computing D by means of the last expression above has avoided all the ill-
conditioning even as ε → 0 (eliminated through our analytic knowledge that
(ET QT )(ET QT )−1 = I).

8 Appendix B: The RBF-QR method in the case of Wendland

functions

Hubbert and Baxter [20] noted that RBFs, when centered at an arbitrary
location xi on the unit sphere, can be expanded in terms of SPH as

φ(‖x − xi‖) =
∞∑

µ=0

µ∑

ν=−µ

′{cµ Y ν
µ (xi)} Y ν

µ (x) (19)

where

cµ =
π

2k−1k!

∫ 1

−1
(1 − t2)k dk

dtk
φ
(√

2 − 2t
)
dt . (20)

They also gave explicit formulas for the coefficients cµ in several cases, such as
MQ, IMQ and GA. A formula for IQ was given in [14]. In these formulas, the
potentially dangerous ε-dependence of the radial functions φ(‖x − xi‖) takes
the simple form of explicit high powers of ε in the coefficients, thereby permit-
ting their analytic elimination in the RBF-QR algorithm. Typical examples
include

MQ: cµ = −ε2µ 2π(2ε2+1+(µ+1/2)
√

1+4ε2)
(µ+3/2)(µ+1/2)(µ−1/2)

(
2

1+
√

4ε2+1

)2µ+1

IMQ: cµ = ε2µ 4π
(µ+1/2)

(
2

1+
√

4ε2+1

)2µ+1

Since expansions of the type (19) have not previously been given in the case of
the Wendland radial functions, and these functions’ limited smoothness causes
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some difficulties in the RBF-QR algorithm, we give below some comments on
these issues. The Wendland function W2 of order 2 can be written as

φ(r) =






(1 − εr)4(4εr + 1) if r < 1
ε

0 if r ≥ 1
ε

Since we are interested in these expansions (19) only for for small ε (in order
to apply the RBF-QR algorithm), we assume ε < 1

2
. The Wendland functions

on the sphere are then no longer of compact support, and the formula for W2
simplifies to

φ(r) = (1 − εr)4(4εr + 1) .

Straightforward application of (20) now gives






c0 = 4π(2 − 40ε2 + 128ε3 − 160ε4 + 512
7

ε5)

c1 = ε2 32
63

π(105 − 432ε + 630ε2 − 320ε3)

c2 = ε3 64
231

π(88 − 231ε + 160ε2)

ck = ε3 45·29π((2k−5)(2k+7)−20ε2)
(2k+7)(4k2−1)(4k2−9)(4k2−25)

k = 3, 4, ...

The expansions for W4 and W6 are easily found in a similar way, but are more
lengthy and will not be explicitely given here. The fact that the expansion
coefficients ck for the smooth radial functions go to zero like O(ε2k) is utilized
in the RBF-QR algorithm. In the W2-case, ck remains of size O(ε3) for k =
3, 4, ..., and the RBF-QR method requires a minor modification. At the key
stage in that algorithm (Section 3.5 in [14]), we have now instead





φ(‖x − x1‖)
φ(‖x − x2‖)
...

φ(‖x − xn‖)





=

O(1) O(ε2) O(ε3)




︷ ︸︸ ︷
c0,ε

2
Y 0

0 (x1)

c0,ε

2
Y 0

0 (x2)

...

c0,ε

2
Y 0

0 (xn)

︷ ︸︸ ︷
c1,ε

1
Y −1

1 (x1)
c1,ε

2
Y 0

1 (x1)
c1,ε

1
Y 1

1 (x1)

c1,ε

1
Y −1

1 (x2)
c1,ε

2
Y 0

1 (x2)
c1,ε

1
Y 1

1 (x2)

... ... ...

c1,ε

1
Y −1

1 (xn) c1,ε

2
Y 0

1 (xn) c1,ε

1
Y 1

1 (xn)

︷︸︸︷

....

....

....

....









Y 0
0 (x)

Y −1
1 (x)

Y 0
1 (x)

Y 1
1 (x)

Y −2
2 (x)

Y −1
2 (x)

...





= B · Y
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QR factorization of B gives

B =





Q









1

ε2

ε2

ε2

ε3

. . .





×

×





∗ . . . . . . . . . . . . ...

∗ ∗ ∗ . . . . . . . . . ...

∗ ∗ . . . . . . . . . ...

∗ . . . . . . . . . ...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ...
. . . ... ... ... ... ... ... ... ...





= Q · E · R

After the fourth row, the elements of R do not contain factors of ε anymore,
and these elements therefore no longer vanish when ε → 0. Each row can be
seen as a perturbed spherical harmonic function. The fact that the pertur-
bation doesn’t vanish as ε → 0 means that the RBF interpolant no longer
converges towards the SPH interpolant (as was the case with smooth RBFs).
The situation is similar for all other non-smooth radial functions. This also
means that the convergence of the expansion will not be sped up when ε → 0,
but rather will be strictly algebraic in k. We will therefore need a much larger
number of terms in the expansions to attain the desired accuracy in the RBF-
QR method. However, since non-smooth radial functions seldom are used near
their flat limit, this may be of little practical significance.
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Fig. 1. RBF errors in three applications, displayed as functions of the shape parame-
ter ε. The three rows of subplots reproduce data from [25], [14], and [7], respectively.
The abbreviations MQ, IQ, GA are explained in Section 2.
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Fig. 2. (a) Flow directions in the ‘solid body’ convection test problem, (b) Spherical
latitude-longitude-type coordinate system.
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Fig. 3. Three illustrations of the cosine bell (a) as a function of x according to (6),
(b) in grey-scale on sphere surface, viewed from positive x-direction, and (c) on an
‘unrolled’ ϕ, θ-plane (with the n = 1849 ME node locations also marked).
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ME nodes MD nodes

Fig. 4. Illustration of the minimal energy (ME) and maximal determinant (MD)
n = 1849 node sets.
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Fig. 5. The SPH interpolant to the cosine bell over the n = 1849 ME node points.
The input data is as exactly as shown by the data points in Figure 3 c.

30

1 5 8



10
−6

10
−4

10
−2

10
0

10
2

10
−3

10
−2

10
−1

10
0

ε

|e
rr

or
|

(b) IMQ, MD nodes

10
−6

10
−4

10
−2

10
0

10
2

10
−3

10
−2

10
−1

10
0

ε

|e
rr

or
|

(a) IMQ, ME nodes

 

 

RBF−Direct
RBF−QR

10
−6

10
−4

10
−2

10
0

10
2

10
−3

10
−2

10
−1

10
0

ε

|e
rr

or
|

(d) W6, MD nodes

  0
%

 s
pa

rs
e

  9
0%

 s
pa

rs
e

10
−6

10
−4

10
−2

10
0

10
2

10
−3

10
−2

10
−1

10
0

ε

|e
rr

or
|

(c) W6, ME nodes

  0
%

 s
pa

rs
e

  9
0%

 s
pa

rs
e

Interpolation Interpolation

Interpolation

Interpolation

Least−squares Least−squares

Least−squares Least−squares

Fig. 6. The errors (in max norm) when the initial cosine bell is brought to an
n = 1849 node RBF representation (a) IMQ on ME nodes, (b) IMQ on MD nodes,
(c) W6 RBF on ME nodes, and (d) W6 on MD nodes. In the W6 cases, the ε
values corresponding to 0% and 90% sparsity of the A-matrix are marked. In all
cases, we contrast direct interpolation with the least square approach described in
Section 3.4. We display the divergence of RBF-Direct for decreasing ε in subplots
a,b (appearing as near-vertical solid lines around ε = 1). In subplots c,d and in the
following Figures 7, 9, 10, similar divergence occurs but is not explicitly marked.
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Fig. 7. Errors at times t = 10 and t = 10, 000 as functions of ε in case of (a) IMQ
and (b) W6. The thin dashed line shows the (ε-independent) error of the initial
SPH representation of the initial data at t = 0.

32

1 6 0



0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

t

|e
rr

or
|

0 2000 4000 6000 8000 10000
10

−3

10
−2

10
−1

10
0

t

|e
rr

or
|

(a) t = 0 to 10

(b) t = 0 to 10,000

TPS

TPS

W6

W6

GA

GA

IMQ

IMQ

Fig. 8. Evolution of the error with time over (a) 0 ≤ t ≤ 10 and (b) 0 ≤ t ≤ 10, 000.
The ε values for IMQ, GA and W6 were near zero, whereas TPS does not include
any ε.
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Fig. 9. The errors at t = 10, as functions of ε, for all the RBF choices considered in
this study. In the case of GA, the ill-conditioning for RBF-Direct occurs somewhat
earlier than for the other smooth RBF types, leaving a small gap (visible also in
Figure 10) between the ranges of RBF-QR and RBF-Direct. For large values of ε, the
MQ results are notably more accurate than those for the other RBF types (although
not nearly as good as what all the smooth RBFs achieve for small ε-values).
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Fig. 10. The errors at t = 10, 000, as functions of ε, for all the RBF choices considered
in this study.
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Fig. 11. Effect of d
dx and of finite difference approximations of different orders of d

dx
when applied to a basic Fourier mode eiωx. The highest mode that can be present
on a grid of spacing h is denoted by ωmax = π/h (Reproduced from [10], with
permission from Cambridge University Press).
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Fig. 12. The integrity of a narrow Gaussian pulse (shown as dots on a grid with
h = 1) when integrated exactly in time, using FD2, FD4 and FD6, respectively, in
space.
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Fig. 13. Corresponding results to those in Figure 12, but using IQ RBF with different
ε-values.
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Fig. 14. Illustration of the SPH basis functions Y ν
µ for orders µ ≤ µmax = 4. The

dashed lines show where they change sign.
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Fig. 15. The eigenvalues to the convective operator in the sphere case, computed by
using IQ RBF in the ε = 0 limit. According to the motivation for (16), they can be
associated with µ and ν-values as shown.
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Fig. 16. (a) The n = 51 1-D convection PDE eigenvalues for different orders of FD
schemes in case of h = 1 and a periodic domain [−25, 25] (rather than [−∞,∞]),
(b) The n = 529 sphere convection problem eigenvalues for different ε-values (in
the case of MQ; results for other smooth RBF types are very similar). The vertical
scales are not marked since the present issue of interest is to show qualitatively how
the extents in the two cases vary with FD order and with ε-value, respectively.
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Fig. 17. Comparison between the results reported in [7] and the present ones for
the test case of convecting the cosine bell one time around the sphere (GA RBF
using n = 1849 ME nodes). The results are in close agreement for ε ≥ 3 (where
both computations vere based on RBF-Direct). RBF-QR (in this case convergent
only for ε . 1), in combination with the least squares approach, has overcome the
previously seen low-ε divergence.
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Name of RBF Abbrevi- Definition

ation

Smooth, global

Multiquadric MQ
√

1 + (εr)2

Inverse multiquadric IMQ
1√

1 + (εr)2

Inverse quadratic IQ
1

1 + (εr)2

Gaussian GA e−(εr)2

Piecewise smooth, global

Cubic CU |r|3

Thin plate spline TPS r2 ln |r|

Piecewise smooth, compact (for 0 ≤ r ≤ 1
ε ; equal to zero for r > 1

ε )

Wendland type, order 2 W2 (1 − εr)4(4εr + 1)

order 4 W4 (1 − εr)6(35
3 (εr)2 + 6εr + 1)

order 6 W6 (1 − εr)8(32(εr)3 + 25(εr)2 + 8εr + 1)

Table 1
Definitions of some types of radial functions. The shape parameter ε controls their
‘flatness’. In the case of the Wendland functions, their ‘order’ refers to their degree
of smoothness (C2, C4, C6 respectively).
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